
Crowdsourcing Feature Discovery via Adaptively Chosen Comparisons

James Zou JAZO@MICROSOFT.COM

Microsoft Research New England

Kamalika Chaudhuri KAMALIKA@CS.UCSD.EDU

UCSD

Adam Kalai ADAM.KALAI@MICROSOFT.COM

Microsoft Research New England

Abstract
We introduce an unsupervised approach to effi-
ciently discover the underlying features in a data
set via crowdsourcing. Our queries ask crowd
members to articulate a feature common to two
out of three displayed examples. In addition, we
ask the crowd to provide binary labels for these
discovered features on the remaining examples.
The triples are chosen adaptively based on the la-
bels of the previously discovered features on the
data set. This approach is motivated by a for-
mal framework of feature elicitation that we in-
troduce and analyze in this paper. In two natural
models of features, hierarchical and independent,
we show that a simple adaptive algorithm recov-
ers all features with less labor than any nonadap-
tive algorithm. The savings are as a result of au-
tomatically avoiding the elicitation of redundant
features or synonyms. Experimental results vali-
date the theoretical findings and the usefulness of
this approach.

1 Introduction

Discovering features is essential to the success of machine
learning and statistics. Crowdsourcing can be used to dis-
cover these underlying features, in addition to merely la-
beling them on data at hand. This paper addresses the fol-
lowing unsupervised learning problem: given a data set,
using as few crowd queries as possible, elicit a diverse set
of salient feature names along with their labels on that data
set. For example, on a data set of faces, salient features
might correspond to gender, the presence of glasses, fa-

Proceedings of the 31 st International Conference on Machine
Learning, Lille, France, 2015. JMLR: W&CP volume 37. Copy-
right 2015 by the author(s).

cial expression, among others. In this paper we focus on
binary features, each of which can be thought of as a func-
tion mapping data to {0, 1}. The term feature name refers
to a string describing the feature (e.g., male or wearing
glasses), and the label of a feature on an example refers the
{0, 1}-value of that feature on a that datum, as annotated
by crowd workers. Features are useful in exploratory anal-
ysis, for other machine learning tasks, and for browsing
data by filtering on various facets. While the features we
use are human-generated and human-labeled, they could be
combined with features from machine learning, text analy-
sis, or computer vision algorithms. In some cases, features
provide a significantly more compact representation than
other unsupervised representations such as clustering, e.g.,
one would need exponentially many clusters (such as smil-
ing white men with grey hair wearing glasses) to represent
a set of features.

A widely-used crowdsourcing technique for eliciting fea-
tures is to simply ask people to tag data with multiple words
or phrases. However, tagging individual examples fails to
capture the differences between multiple images in a data
set. To illustrate this problem, we asked 10 crowd workers
to tag 10 random signs from an online dictionary of Amer-
ican Sign Language, all depicted by the same bearded man
in a gray sweatshirt. As illustrated in Figure 1, the tags
generally refer to his hair, clothes, or the general fact that
he is gesturing with his hands. Each of the 33 tags could
apply equally well to any of the 10 video snips, so none of
the features could discriminate between the data.

Inspired by prior work ((Patterson and Hays, 2012; Heik-
inheimo and Ukkonen, 2013; Tamuz et al., 2011)) and
the familiar kindergarten question, “which one does not
belong?”, we elicit feature names by presenting a crowd
worker with a triple of examples and asking them to name
a feature common to any two out of the three examples.
We refer to this as a “two-out-of-three” or, more succinctly,
2/3 query. These features are meant to differentiate yet be

Intersecting Faces: Non-negative Matrix Factorization With New Guarantees

Figure 1. Comparing three examples yields a useful feature (top)
whereas tagging them separately yields nondiscriminative, redun-
dant features (bottom).

common as opposed to overly specific features that cap-
ture peculiarities rather than meaningful distinctions. As
illustrated in Figure 1, in contrast to tagging, the learned
features partition the data meaningfully.

How should one choose such triples? We find that, very of-
ten, random triples redundantly elicit the same set of salient
features. For example, 60% of the responses on random
sign triples distinguish signs that use one vs. two hands. To
see why, suppose that there are two “obvious” complimen-
tary features, e.g., male and female, which split the data
into two equal-sized partitions and are more salient than
any other, i.e., people most often notice these features first.
If the data are balanced, then 75% of triples can be resolved
by one of these two features.

To address this inefficiency, once we’ve discovered a fea-
ture, e.g., one/two-handedness, we then ask crowd workers
to label the remaining data according to this feature. This
labeling is necessary eventually, since we require the data
to be annotated according to all discovered features. Once
we have labels for the data, we never perform a 2/3 query
on resolved triples, i.e., those for which we have a feature
whose labels are positive on exactly two out of the three ex-
amples. Random 2/3 queries often result in the one of these
salient features. Our adaptive algorithm, on the other hand,
after learning the features of, say, “male” and “female,” al-
ways presents three faces labeled by the same gender (as-
suming consistent labeling) and thereby avoids eliciting the
same feature again (or functionally equivalent features such
as “a man”).

The face data set also illustrates how some features are hi-
erarchical while others are orthogonal. For instance, the
feature “bearded” generally applies only to men, while the
feature “smiling” is common across genders. We analyze
our algorithm and show that it can yield large savings both

in the case of hierarchical and orthogonal features. Propo-
sition 1 states that our algorithm finds all M features of a
proper binary hierarchical “feature tree” using M queries,
whereas Proposition 2 states that any non-adaptive algo-
rithm requires Ω(M3) queries. The lower bound also sug-
gests that “generalist” query responses are more challeng-
ing than “specifics,” e.g., in comparing a goat, a kangaroo,
and a car, the generalist may say that the goat and kangaroo
are both animals rather while the specifist may distinguish
them as both mammals. We then present a more sophis-
ticated algorithm that recovers D-ary trees on M features
and N examples using Õ(N + MD2) queries, with high
probability (see Proposition 3).

Finally, we show that in the case ofM independent random
features, adaptivity can give an exponential improvement
provided that there is sufficient data (Lemmas 5.2 and 5.3).
For example, in the case of M independent uniformly ran-
dom features, our algorithm finds all features using fewer
than 3M queries (in expectation) compared to a Ω(1.6M)
for a random triple algorithm. In all analysis, we do not
include the cost of labeling the features on the data since
this cost must be incurred regardless of which approach is
used for feature elicitation. Moreover, the labeling cost is
modest as workers took less than one second, amortized, to
label a feature per image when batched (prior work (Pat-
terson and Hays, 2012) reported batch labeling for approx-
imately $0.001 per image-feature label).

Interestingly, our theoretical findings imply that 2/3 queries
are sufficient to learn in both our models of hierarchial and
independent features, with sufficient data. We also discuss
2/3 queries in comparison to other types, e.g., why not ask
a “1/3 query” for a feature that distinguishes one example
from two others? Note that 1/3 and 2/3 queries may seem
mathematically equivalent if the negation of a feature is al-
lowed (one could point out that two are “not wearing green
scarves”). However, research in psychology does not find
this to be the case for human responses, where similarity is
assumed to be based on the most common positive features
that examples share (see, e.g., the theory of similariteies in
(Tversky, 1977)). Proposition 4 shows that there are data
sets where larger arbitrarily large query sizes are necessary
to elicit certain features.

The main contribution of this paper is introducing an adap-
tive algorithm that uses 2/3 queries to elicit human features
from crowdworkers on an arbitrary data set. Our analy-
sis and experiments show that the adaptivity saves labor by
preemptively avoiding duplicate or synonymous features
by interleaving steps of labeling data with feature elicita-
tion. The paper is organized as follows. After discussing
related work, we introduce the model for feature elicita-
tion and our adaptive triple algorithm. We then analyze
the performance of the adaptive algorithm (versus any non-

Intersecting Faces: Non-negative Matrix Factorization With New Guarantees

adaptive algorithm) in the settings of hierarchical features
and independent features. Finally, we discuss alternative
types of queries and present experimental results.

2 Related work

In machine learning and AI applications, as cited by
(Parikh and Grauman, 2011), relevant features are often
elicited from domain experts ((Farhadi et al., 2009; Wang,
Markert, and Everingham, 2009)) or from text mining
((Berg, Berg, and Shih, 2010)). As mentioned, a com-
mon approach for crowdsourcing named features is image
tagging, see, e.g., the ESP game ((von Ahn and Dabbish,
2004)). There is much work on automatic representation
learning and feature selection from the data alone (see, e.g.,
(Bengio, Courville, and Vincent, 2013)), but these litera-
tures are too large to cover here.

One work that inspired our project was that of (Patterson
and Hays, 2012), who crowdsourced nameable attributes
for the SUN Database of images using comparative queries.
They presented workers with random quadruples of images
from a data set separated vertically and elicited features by
asking what distinguishes the left pair from the right. Their
images were chosen randomly and hence without adapta-
tion. They repeated this task over 6,000 times. We discuss
such left-right queries in later in this paper.

For supervised learning, (Parikh and Grauman, 2011) ad-
dress multi-class classification by identifying features that
are both nameable and machine-approximable. They intro-
duce a novel computer vision algorithm to predict “nama-
bility” of various directions in high-dimensional space and
present users with images ordered by that direction. Like
ours, their algorithm adapts over time, though their under-
lying problem and approach are quite different. In indepen-
dent work on crowdsourcing binary classification, (Cheng
and Bernstein, 2015) elicit features by showing workers a
random pair of positive and negative example. They clus-
ter the features using statistical text analysis which reduces
redundant labeling of similar features (which our algorithm
does through adaptation), but it does not solve the problem
that a large number of random comparisons are required in
order to elicit fine-grained features. They also introduce
techniques to improve the feature terminology and clarify
feature definitions, which could be incorporated into our
work as well.

Finally, crowdsourced feature discovery is a human-in-the-
loop form of unsupervised dictionary learning (see, e.g.,
(Lee et al., 2006)). Analogous to the various non-featural
representations of data, crowdsourcing other representa-
tions has also been studied. For hierarchical clustering,
a number of algorithms have been proposed (see, e.g.,
(Chilton et al., 2013)). Also, Kernel-based similarity repre-

sentations have been crowdsourced adaptively by (Tamuz
et al., 2011).

3 Preliminaries and Definitions

We first assume that there is a given set X =
{x1, x2, . . . , xN} of examples (images, pieces of text or
music, etc.) and an unknown set F = {f1, f2, . . . fM} of
binary features fj : X → {0, 1} to be discovered. We
say that feature fj is present in an example xi ∈ X if
fj(x) = 1, absent if fj(x) = 0, and we abuse notation
and write xi,f ≡ f(xi) and xi,j ≡ fj(xi). Hence, since
there are M hidden features and N examples, then there
is an underlying latent N -by-M feature allocation matrix
A with binary entries. The ith row of A corresponds to
sample xi, and the jth column of A corresponds to feature
fj .

Our goal is to recover this entire matrix A, together with
names for the features, using minimal human effort.

Definition Given a feature f and an example xi, a labeling
query L(xi, f) returns f(xi).

As we will discuss, in practice labeling is performed more
efficiently in batches. A consideration for query design is
that we want each contrastive query to be as cognitively
simple as possible for the human worker. Our analysis sug-
gests that comparisons of size three suffice, but for com-
pleteness we define comparisons on pairs as well.

Definition A 2/3 query Q(x, y, z) either returns a feature
f ∈ F such that f(x) + f(y) + f(z) = 2 or it returns
NONE if no such feature exists.

A 1/2 query on Q(x, y) either returns a feature f ∈ F
such that f(x) + f(y) = 1 or returns NONE if x and y are
identical.

We also refer to 2/3 queries as triple queries and 1/2 queries
as pair queries. Note that we can simulate a pair query
Q(x, y) by two triple queriesQ(x, x, y) andQ(x, y, y). We
say that a feature f distinguishes a set of examples S if∑
x∈S f(x) = |S| − 1, i.e., it holds for all but one example

in S.

Definition A query is resolved if there is a known distin-
guishing feature for the query, or it is known that NONE is
the outcome of the query, based on prior dicovered features
and their labels on the data.

Algorithm 1, the Adaptive Triple Algorithm, is the main al-
gorithm we use for experimentation and analysis. Adaptive
Triple can be ran on any dataset to elicit features. It does
not assume any structure between the features. To under-
stand its theoretical properties, we analyze the performance

Intersecting Faces: Non-negative Matrix Factorization With New Guarantees

of Adaptive Triples in two natural models: when features
form a hierarchy and when features are independent. Note
that our analysis is meant to yield insight – we do not be-
lieve that either of our toy models holds in practice.

Algorithm 1 Adaptive Triple
Input: N examples X = {xi}.
Output: A set of features F = {f} and their correspond-

ing labels on all examples xi,f for i ≤ N, f ∈ F .
1: Randomly select a triple {x, y, z} from the set of all

unresolved triple queries. Let f = Q(x, y, z).
2: If f 6=NONE: (a) add it to F , (b) run the labeling query
L(xi, f) for all xi ∈ X , and (c) update the set of unre-
solved queries.

3: If all all triples of examples can be resolved by one of
the discovered features, terminate and output F and the
labels. Otherwise, go to 1.

4 Hierarchical Feature Models

We now consider the setting where the features and exam-
ples form a tree, with each internal node (other than the
root) corresponding to a single feature and each leaf corre-
sponding to a single example. The features that are 1 for
an example are defined to be those on the path to the root,
and the others are 0. The root is not considered a feature.
Hence, if feature f is an ancestor of g, then g ≤ f in that
whenever g is 1, f must be 1 as well.

Definition A feature tree T is a rooted tree in which each
internal node (aside from the root) corresponds to a dis-
tinct feature and each leaf corresponds to a distinct exam-
ple. The value of a feature on an example is 1 if the node
corresponding to that feature is on the the path to the root
from the leaf corresponding to the example, and 0 other-
wise.

Note that our algorithms recover the features but not the
tree explicitly – reconstructing the corresponding feature
tree is straightforward if the data is consistent with one.

4.1 Binary feature trees

In this section, we consider the standard notion of proper
binary trees in which each internal node has exactly two
children. Figure 2 illustrates a proper binary feature tree.

Proposition 1. For a proper binary feature tree on M fea-
tures, the Adaptive Triple algorithm finds all features using
M queries.

Proof. To prove this proposition, we will show that: (a)
we never receive a NONE response in the Adaptive Triple
Algorithm, and (b) every feature has at least one triple for

natural

plant

animal

bird

(root)

man-
made

most general

Figure 2. A sample proper binary feature tree. When comparing
the pen, flower, and tree, the distinguishing features are natural
and plant. A generalist would respond with natural.

which it is the unique distinguishing feature. Since a query
in this algorithm cannot return an already discovered fea-
ture, and since there are M features, this implies that there
must be exactly M queries.

For (a), let f be the least common ancestor of an example
triple {x, y, z}. Since T is proper, f must have exactly
two children. By the definition of least common ancestor,
two out of {x, y, z} must be beneath one child of f (call
this child g) while the other one is beneath the other child.
Then g is a distinguishing feature for Q(x, y, z). Hence,
we should never receive a NONE response.

For (b), observe that every internal node (other than the
root) has at least one triple for which it is the unique dis-
tinguishing feature. In particular, given any internal node,
f , let l and r be its left and right children. Let x and y be
examples under l and r (with possibly x = l or y = r if l
or r are leaves). Let s be the sibling of f (the other child of
its parent) and let z be any leaf under of s (again z = s if s
is a leaf). Then it is clear that f is the unique distinguishing
triple for x, y, and z. For example, in Figure 2, for the fea-
ture plant, a triple such as the flower, tree, and fish, would
uniquely be distinguished by plant.

Now consider different ways to answer queries: define a
generalist as an oracle for Q that responds to any query
with the shallowest distinguishing feature, i.e., the one
closest to the root. For example, given the pen, flower
and tree of Figure 2, the generalist would point out that
the flower and tree are both natural rather than that they

Intersecting Faces: Non-negative Matrix Factorization With New Guarantees

are both plants. Also, say an algorithm is non-adaptive
if it specifies its queries in advance, i.e., the triples can-
not depend on the answers to previous queries but could
be random. We also assume that the data is anonymous
which means that we can think of the specific examples be-
ing randomly permuted in secret before being given to the
algorithm.

We now show that any general-purpose non-adaptive algo-
rithm that does not exploit any content information on the
examples requires at least Ω(M2) examples to find all M
features and at least Ω(M3) if all queries are answered by
generalists.
Proposition 2. If the examples correspond to a random
permutation of the leaves of a proper binary tree T with M
features, then any non-adaptive algorithm requires at least
M2/12 queries to recover all M features with probability
1/2. Furthermore, if queries are answered by generalists,
then any non-adaptive algorithm requires at least M3/24
queries to find all features with probability 1/2.

Figure 2 sheds light on this proposition – in order to dis-
cover the feature bird, we mush choose both birds in a
triple. If the queries are answered by a generalist, we would
have to choose the birds and fish. The probability of choos-
ing two specific examples is O(1/M2) while the probabil-
ity of choosing three specific examples is O(1/M3).

Note that pairs are insufficient to recover internal nodes
in the case where a specifist answers queries. This moti-
vates the need for triples; moreover, Proposition 1 shows
that triple queries suffice to discover all the features in a
binary feature tree.

4.2 General feature trees

We now present a theoretical algorithm using triple queries
which allows us to efficiently learn general “D-ary leafy
feature trees,” which we define to be a feature tree in which:
(a) every internal node (i.e., feature) has at most D internal
nodes (but arbitrarily many leaves) as children, and (b) no
internal node has a single child which is an internal node.
Condition (a) is simply a generalization of the standard
branching factor of a rooted tree, and condition (b) rules
out any “redundant” features, i.e., features which take the
same value for each example. This algorithm generalizes
the simpler Adaptive Triple algorithm.
Proposition 3 (Adaptive Hybrid, Upper Bound). Let T be
a D-ary leafy feature tree with N examples and M fea-
tures. The Adaptive Hybrid algorithm with exploration
time θ = 3D2 log M

δ terminates afterO(N+MD2 log M
δ)

number of triple queries and finds all features with proba-
bility ≥ 1− δ.

The proof of Proposition 3 makes use of the following
Lemma.

Algorithm 2 Adaptive Hybrid
Input: Examples X = {xi} and exploration parameter θ.
Output: The set of features F and labels for all examples

xi,f .
1: Query pairs of examples until we have, for each pair,

found a feature that distinguishes them, or determined
that they have identical features (by direct comparison
or transitivity).

2: Maintain a queue Q of features to explore, and a queue
of already discovered features F . Initialize Q = {r},
where r is a default root feature defined as: xir =
1,∀i ∈ X . Initialize F = {}.

3: while Queue Q is not empty do
4: Pop a feature f from Q. Set off(f) = {fj s.t. 6

∃f ′ with fj < f ′ < f}. Represent each feature fj
in off(f) by a randomly selected example xj such
that xj,fj = 1.

5: Uniformly randomly select distinct examples
x, y, z ∈ off(f), and query {x, y, z}. If the query
returns a feature f ′, push f ′ to Q, run labeling
queries {x, f ′} for all x ∈ off(f) and update off(f).

6: If Step 5 returns θ consecutive NONEs, then add f
to F and go to Step 4 and pop the next feature from
the Q.

7: end while
8: return F and the labels xi,f .

Lemma 1. Let T be a non-star, D-ary leafy feature tree.
Then the Random Triple algorithm finds at least one feature
with probability ≥ 1− δ using 3D2 log 1

δ queries.

5 Independent features

In this section we consider examples drawn from a distribu-
tion in which different features are independent. Consider a
statistical model in which there is a product distribution D
over a large set of examplesX . This model is used to repre-
sent features that are independent of one other. An example
of two independent features in the Faces data set might be
“Smiling” and “Wearing Glasses.” We assume that D is a
product distribution over M independent features. Thus D
can be described by a vector {pf , f ∈ F}, where for any
feature f ∈ F , pf = Prx∼D

[
f(x) = 1

]
. We also abuse

notation and write pi for pfi . We assume 0 < pi < 1.

In this model, there is a concern about how much data is
required to recover all the features. In fact, for certain fea-
tures there might not even be any triples among the data
which elicit them. To see this, consider a homogenous
crowd that all answers queries according to a fixed order on
features. Formally, if more than one feature distinguishes
a triple, suppose the feature that is given is always the dis-
tinguishing feature fi of smallest index i. Intuitively, this

Intersecting Faces: Non-negative Matrix Factorization With New Guarantees

models a situation where features are represented in de-
creasing salience, i.e., differences in the first feature (like
gender) are significantly more salient than any other fea-
ture, differences in the second feature stand out more than
any feature other than the first, and so forth. Now, also sup-
pose that all features have probability 1/2 of being positive.

Lemma 2. If p1 = p2 = · · · = pM = 1/2, then with a
homogeneous crowd, N ≥ 1.1M examples are required to
find all features with probability 1/2 even if all triples are
queried.

On the other hand, we show that all features will be discov-
ered with a finite number of samples. In particular, say a
feature f is identifiable on a data set if there exists a triple
such that f is the unique distinguishing feature. If it is iden-
tifiable, then of course the adaptive triple algorithm will
eventually identify it. We now argue that, given sufficiently
many examples, all features will be identifiable with high
probability.

Lemma 3 (Identifiability in the Independent Features
Model). Suppose N examples are drawn iid from the In-
dependent Features Model where feature f has frequency
pf . For any feature f , let:

τf = 3p2f (1− pf)
∏
g 6=f

(
1− p2g(1− pg)

)
.

Moreover, let τmin = minf τf . If N ≥
Ω(log(1/τmin)/τmin), then, with constant probability,
all features are identifiable by triple queries.

The above exponential upper and lower bounds are worst
case. In fact, it is not difficult to see that for a totally het-
erogeneous crowd, which outputs a random distinguishing
feature, if all pi = 1/2, only N = O(logM) examples
would suffice to discover all features because one could
query multiple different people about each triple until one
discovered all distinguishing features. Of course, in reality
one would not expect a crowd to be completely homoge-
neous nor completely heterogeneous (nor completely gen-
eralists nor completely specifists), and one would not ex-
pect features to be completely independent or completely
hierarchical. Instead, we hope that our analysis of certain
natural cases helps shed light on why and when adaptivity
can significantly help.

As we now turn to the analysis of adaptivity and the number
of queries, we make a “big data” assumption that we have
an unbounded supply of examples. This makes the anal-
ysis simple in that the distribution over unresolved triples
takes a nice form. We show that the number of queries re-
quired by the adaptive algorithm is linear in the number of
features, while it grows exponentially with the number of
features for any non-adaptive algorithm.

We first provide an upper bound on the number of queries
of the Adaptive Triple algorithm in this model.

Lemma 4 (Adaptive Triple). Suppose for j = 1, . . . , k,
we have Mj independent features with frequency pj and
infinitely many examples. Then the expected number of
queries used by Adaptive Triple to discover all the features
is at most

∑k
j=1

Mj

qj
, where qj = 3p2j (1 − pj). For the

Adaptive Pair algorithm, set qj = 2pj(1− pj).

We next provide lower bounds on the number of queries of
any non-adaptive algorithm under the independent feature
model.

Lemma 5 (non-adaptive triple). Suppose for j = 1, . . . , k,
we have Mj independent features with frequency pj and
infinitely many examples. Let qj = 3p2j (1 − pj). The ex-
pected number of queries made by any non-adaptive triple
algorithm is at least:

1− qmax∏k
i=1(1− qi)Mi

,

where qmax = maxi qi.

To interpret these results, consider the simple setting where
all the features have the same probability: pj = p. Then
the random triple algorithm requires at least 1/(1− q)M−1
queries on average to find all the features. This is exponen-
tial in the number of features, M . In contrast, the adaptive
algorithm at most M/q queries on average to find all the
features, which is only linear in the number of features.

6 Other types of queries

Clearly 2/3 queries are not the only type of queries. For
example, an alternative approach would use 1/3 queries in
which one seeks a feature that distinguishes one of the ex-
amples from the other two. Such queries could result in
features that are very specific to one image and fail to elicit
higher-level salient features. Under the hierarchical feature
model, 1/3 queries alone are not guaranteed to discover all
the features.

A natural generalization of the left-vs-right queries in pre-
vious work (Patterson and Hays, 2012; Cheng and Bern-
stein, 2015) are queries with sets L and R of sizes |L| ≤
`, |R| ≤ r, where a valid answer is a feature common to
all examples in L and is in no examples in R. We refer
to such a query as an ` − r query L − R. In fact, a 2/3
query on {x, y, z} may be simulated by running the three
L-R queries {x, y}− {z}, {y, z}− {x}, and {x, z}− {y}.
(Note that this may result in a tripling of cost, which is
significant in many applications.) There exist data sets for
which L-R queries can elicit all features (for various values
of `, r) while 2/3 queries may fail.

Intersecting Faces: Non-negative Matrix Factorization With New Guarantees

Proposition 4. For any `, r ≥ 1, there exists a data set
X of size N = |X| = ` + r and a feature set F of size
M = |F| = 1+`+r such that `−r queries can completely
recover all features while no `′ − r′ query can guarantee
the recovery the first feature if `′ < ` or if r′ < r.

7 Experiments

We tested our algorithm on three datasets: 1) a set of 100
silent video snips of a sign-language speaker (ASL); 2) a
set of 100 human face images used in a previous study
(Tamuz et al., 2011); 3) a set of 100 images of ties, tiles
and flags from that same (Tamuz et al., 2011) study. All the
images and videos were initially unlabeled. The goal was
to automatically elicit features that are relevant for each
dataset and to label all the items with these features. We
implemented our Adaptive Triple algorithm on the popu-
lar crowdsourcing platform, Amazon Mechanical Turk, us-
ing two types of crowdsourcing tasks. In a feature elicita-
tion task, a worker is shown three examples and is asked
to specify a feature that is common to two of the examples
but is not present in the third. In a labeling task, a worker
is shown one feature and all examples and is asked which
examples have the feature. To reduce noise, we assigned
each labeling task to five different workers, assigning each
label by majority.

To compare adaptivity to non-adaptivity, we implemented a
Random Triple algorithm that picks a set of random triples
and then queries them all. To compare triples to pairs, we
also implemented an Adaptive Pair algorithm, defined in
the analogous way to the random triple algorithm except
that it only does pair queries. The Adaptive Triple algo-
rithm automatically determines which sets of examples to
elicit features from and which combination of example and
feature to label. Figure 3 shows the first five queries of the
Adaptive Triple algorithm from one representative run on
the three datasets. For example, on the face data, after hav-
ing learned the broad gender features male and female early
on, the algorithm then chooses all three female faces or all
three male faces to avoid duplicating the gender features
and to learn additional features.

We compared the Adaptive Triple Algorithm to several
natural baselines: 1) a non-adaptive triple algorithm that
randomly selects sets of three examples to query; 2) the
Adaptive Pairs algorithm; 3) the standard tagging approach
where the worker is shown one example to tag at a time and
is asked to return a feature that is relevant for the example.
We used two complementary metrics to evaluate the perfor-
mance of these four algorithms: the number of interesting
and distinct features the algorithm discovers, and how effi-
ciently can the discovered features partition the dataset. In
many settings, we would like to generate as many distinct,
relevant features as possible. On a given data set, we mea-

signs faces products
adaptive triple 24.5 (3.8) 25.3 (0.3) 19 (1.4)
random triples 12.5 (0.4) 18.7 (2.7) 14 (1.4)
adaptive pairs 11.5 (1.1) 14.5 (1.8) 10.5 (0.4)
tagging 9 (0.4) 13 (0.71) 12 (0.4)

Table 1. Number of interesting and distinct features discovered.
Standard error shown in parenthesis.

sure the distance between two features by the fraction of
examples that they disagree on (i.e. the Hamming distance
divided by the number of examples). We say that a feature
is interesting if it differs from the all 0 feature (a feature
that is not present in any image) and from the all 1 feature
(a features that is ubiquitous in all images) in at least 10%
of the examples. A feature is distinct if it differs in at least
10% of the examples from any other feature. If multiple
features are redundant, we represent them by the feature
that was discovered first.

Table 1 shows the number of interesting and distinct fea-
tures discovered by the four algorithms. On each dataset,
we terminate the algorithm after 35 feature elicitation
queries. Each experiment was done in two independent
replicates–different random seeds and Mechanical Turk
sessions. The Adaptive Triple algorithm discovered sub-
stantially more distinct features than all other approaches
in all three datasets. The non-adaptive approaches (random
triples and tagging) were hampered by repeated discover-
ies of a few obvious features–one/two-handed motions in
signs, male/female in faces and product categories in prod-
ucts. Once Adaptive Triples learned these obvious fea-
tures, it purposely chose sets of examples that cannot be
distinguished by the obvious features in order to learn ad-
ditional features. Adaptive comparison of pairs of example
performed poorly not because of redundant features but be-
cause after it learned a few good features, all pairs of ex-
amples can be distinguished and the algorithm ran out of
useful queries to make. This is in agreement with our anal-
ysis of hierarchical features. Pairwise comparisons are only
guaranteed to find the base-level features of the hierarchy
while triples can provably find all the features.

This experiment also highlights another advantage of adap-
tive queries over non-adaptive queries–namely, adaptive
queries reduce the amount of post-processing required to
cluster and collapse similar features. With non-adaptive
queries, we often discover multiple names for redundant or
similar features (e.g. male and man). Manual curation or
NLP is then needed to collapse these names into an unique
feature identifier. Once the Adaptive Triple discovers male,
it automatically selects for examples that can not be dis-
tinguished by man and other words of the same meaning.
Thus, adaptation preemptively reduces the need to collapse
redundant feature names.

Intersecting Faces: Non-negative Matrix Factorization With New Guarantees

Figure 3. The first five features obtained from a representative run of the Adaptive Triple algorithm on the signs (left), faces (middle)
and products (right) datasets. Each triple of images is shown in a row beside the proposed feature, and the two examples declared to
have that feature are shown on the left, while the remaining example is shown on the right.

0 10 20 30
queries

0

0.2

0.4

0.6

0.8

1

fr
a
ct

io
n
 o

f
in

d
is

ti
n
g
u
is

h
a
b
le

 i
m

a
g
e
s sign videos

adaptive triples

adaptive pairs

random triples

tagging

0 10 20 30
queries

0

0.2

0.4

0.6

0.8
face images

0 10 20 30
queries

0

0.2

0.4

0.6

0.8
product images

Figure 4. Comparisons of the adaptive triple algorithm with
benchmarks.

To evaluate how efficiently the discovered features can par-
tition the dataset, we compute the average size of the parti-
tions induced by the first k discovered features. More pre-
cisely, let ft be the tth discovered feature. Then features
f1, ..., fk induces a partition on the examples, P1, ..., PR,
such that examples xi, xj belong to the same partition
if they agree on all the features f1, ..., fk. The average
fraction of indistinguishable images is g({f1, ..., fk}) =∑
r |Pr|2/N2. Before any feature were discovered, g = 1.

If features perfectly distinguish every image, then g =
1/N . In Figure 4, we plot the value of g for the adaptive
triple algorithm and the benchmarks as a function of num-
ber of queries. The adaptive algorithms requires signifi-
cantly fewer queries to scatter the images compared to the
non-adaptive algorithms. On the sign data set, for example,
the adaptive triple required 13 queries to achieve g = 0.05
(i.e. a typical example is indistinguishable from 5% of ex-
amples), while the random triples required 31 queries to
achieve the same g = 0.05. Adaptive Triples and Adaptive
Pairs both achieved rapid decrease in g, indicating that both
were discovering good discriminatory features. However,
as we saw above, Adaptive Pairs terminated early because
it no longer had any unresolved pairs of examples to query,

while Adaptive Triples continued to discover new features.

8 Discussion

We have introduced a formal framework for modeling fea-
ture discovery via comparison queries. Consistent with
previous work by (Patterson and Hays, 2012), we demon-
strated that tagging can be inefficient for generating fea-
tures that are diverse and discriminatory. Our theoretical
analysis suggested that the Adaptive Triple algorithm can
efficiently discover features, and our experiments on three
data sets provided validation for the theoretical predictions.
Moreover, unlike previous non-adaptive feature elicitation
algorithms which had to detect redundant features (either
using humans or natural language processing), our algo-
rithm is designed to avoid generating these redundant fea-
tures in the first place.

A key reason that our algorithm outperformed the non-
adaptive baseline is that in all three of our data sets there
were some features that were especially salient, namely
gender for faces, one or two hands for sign language, and
product type for products. A interesting direction of future
work would be to investigate the performance of adaptive
algorithms in other types of data. Our analysis suggests
that homogeneous crowds and crowds of generalists should
be most challenging for eliciting features. Modeling the
salience of features and the diversity of the crowd are also
interesting directions of future work. In particular, our al-
gorithm made no explicit attempt to find the most salient
features, e.g., one could imagine aggregating multiple 2/3
responses to find the most commonly mentioned features.
In addition, one could leverage the fact that different users
find different features to be salient and model the diversity
of the crowd to extract even more features.

Intersecting Faces: Non-negative Matrix Factorization With New Guarantees

References

Asl dictionary. http://www.lifeprint.com/
dictionary.htm.

Bengio, Y.; Courville, A.; and Vincent, P. 2013. Represen-
tation learning: A review and new perspectives. Pattern
Analysis and Machine Intelligence, IEEE Transactions
on 35(8):1798–1828.

Berg, T. L.; Berg, A. C.; and Shih, J. 2010. Automatic
attribute discovery and characterization from noisy web
data. In Computer Vision–ECCV 2010. Springer. 663–
676.

Cheng, J., and Bernstein, M. S. 2015. Flock: Hybrid
crowd-machine learning classifiers. In Proceedings of
Computer Supported Cooperative Work.

Chilton, L. B.; Little, G.; Edge, D.; Weld, D. S.; and Lan-
day, J. A. 2013. Cascade: Crowdsourcing taxonomy cre-
ation. In Proceedings of the SIGCHI Conference on Hu-
man Factors in Computing Systems, 1999–2008. ACM.

Farhadi, A.; Endres, I.; Hoiem, D.; and Forsyth, D. 2009.
Describing objects by their attributes. In Computer Vi-
sion and Pattern Recognition, 2009. CVPR 2009. IEEE
Conference on, 1778–1785. IEEE.

Heikinheimo, H., and Ukkonen, A. 2013. The crowd-
median algorithm. In First AAAI Conference on Human
Computation and Crowdsourcing.

Lee, H.; Battle, A.; Raina, R.; and Ng, A. Y. 2006. Ef-
ficient sparse coding algorithms. In Advances in neural
information processing systems, 801–808.

Parikh, D., and Grauman, K. 2011. Interactively building
a discriminative vocabulary of nameable attributes. In
CVPR, 1681–1688. IEEE.

Patterson, G., and Hays, J. 2012. Sun attribute database:
Discovering, annotating, and recognizing scene at-
tributes. In Proceeding of the 25th Conference on Com-
puter Vision and Pattern Recognition (CVPR).

Tamuz, O.; Liu, C.; Shamir, O.; Kalai, A.; and Belongie,
S. J. 2011. Adaptively learning the crowd kernel. In Pro-
ceedings of the 28th International Conference on Ma-
chine Learning (ICML-11), 673–680.

Tversky, A. 1977. Features of similarity. Psychological
Review 84:327–352.

von Ahn, L., and Dabbish, L. 2004. Labeling images
with a computer game. In CHI ’04: Proceedings of the
SIGCHI conference on Human factors in computing sys-
tems, 319–326. New York, NY, USA: ACM.

Wang, J.; Markert, K.; and Everingham, M. 2009.
Learning models for object recognition from natural
language descriptions. In Proceedings of the British
Machine Vision Conference, 2.1–2.11. BMVA Press.
doi:10.5244/C.23.2.

Intersecting Faces: Non-negative Matrix Factorization With New Guarantees

A Analysis of the hierarchical feature model

Proof. (Proof of Proposition 2) Let f be the deepest feature (or one of them if there are more than one). Let f have children
x and y which must be leaves since f is a deepest internal node. Let s be the sibling of f . By assumption x and y are
leaves. Now, in order to discover f , the triple must consist of x and y and another node, which happens with probability
(N − 2)/

(
N
3

)
= 6

N(N−1) < 6/M2 for a random triple (since N = M + 2). By the union bound, if there are only M2/12

triples, it will fail to discover f with probability at least 1/2.

Now consider a generalist answering queries. Let S be the set of leaves under s. Since f is the deepest feature, S must be
a set of size 1 or 2 depending on whether or not s is a leaf. It is not difficult to see that the only triples that return f (for
a generalist) are x, y and an element of S. Hence there are at most 2 triples that recover f . Since there are

(
N
3

)
> M3/6

triples, if there are fewer than M3/24 triples, then the probability that any one of them is equal to one of the two target
triples is at most 1/2. The union bound completes the proof.

Proof. (Proof of Lemma 1) Let (xi, xj , xk) be any triplet of examples. Let flca be the lowest common ancestor of xi, xj
and xk in T ; that is, flca is the lowest feature f in T such that xi,f = xj,f = xk,f = 1. If flca is also the lowest common
ancestor of any two out of (xi, xj , xk), then the query {xk, xj , xi} will return NONE; otherwise it returns a node feature.

Recall that in the Adaptive Hybrid algorithm, after the double queries in step 1, we associate each feature fj with a single
example. Thus, for the rest of the proof we assume that there exists a one-to-one mapping between an example and a
feature at the leaf node of T .

Let f be any feature in T , and letLf be the subset of triples (x, y, z) such that f is the lowest common ancestor to x, y and z.
For any triple (x, y, z), let I(x, y, z) = 1 if one of the triple queries {x, y, z} returns a feature; otherwise let I(x, y, z) = 0.
The total number of triple queries which will return a feature can be written as:

∑
f∈T

∑
(x,y,z)∈Lf

I(x, y, z).

Suppose that f has k children in T . Let n1 ≥ n2 . . . ≥ nk be the number of examples associated with these children. We
have two cases.

In the first case, n1 ≥ 2. Let us call such a feature heavy. In this case, querying any triple (x, y, z) where x and y are from
the first child will result in a feature. The fraction of such triples in Lf is at least n1(n1−1)∑

i ni(
∑

i ni−1) ≥
1

2D2 . Thus, for a heavy

f ,
∑

(x,y,z)∈Lf
I(x, y, z) ≥ |Lf |

2D2 .

In the second case, n1 = 1. Call such an f a light feature. As T is not a star, there exists at least one leaf l ∈ T which
does not have f as an ancestor. Consider triples of the form (x, y, l) where x and y are descendants of f such that f is their
lowest common ancestor, and let Sf,l be the set of all such triples.

It turns out that Sf,l has some nice properties. First, |Sf,l| ≥ |Lf |/D; this is because if f has k ≤ D children, then,
|Sf,l| =

(
k
2

)
while |Lf | =

(
k
3

)
. Second, if (x, y, l) is a triple in Sf,l, then the queries (x, y, l) will return a new feature.

Finally, suppose we map each light feature f to the set Sf,l; then, the sets Sf,l and Sf ′,l are disjoint when f 6= f ′.

Therefore, ∑
light f

|Lf | ≤
∑

light f

D|Sf,l| ≤ D
∑
f

∑
(x,y,z)∈Lf

I(x, y, z)

Combining the two cases, we get:∑
light f

|Lf |+
∑

heavy f

|Lf | ≤ (D + 2D2)
∑
f

∑
(x,y,z)∈Lf

I(x, y, z) ≤ (3D2)
∑
f

∑
(x,y,z)∈Lf

I(x, y, z)

Therefore, if we draw a random triple of examples from the subtree below f , and make the corresponding three triple
queries, the probability that we get a new feature is ≥ 1

3D2 . The lemma follows.

Proof. (Proof of Proposition 3) We begin by observing that any time the queries in Step 5 of the algorithm return a feature,
it must be a new feature that we haven’t seen before.

Each leaf feature f is the unique solution to the double query {x, y}, where x is under f and y is under a sibling leaf
feature. Thus, all the leaf features are identified by double queries. Moreover, the double queries return at most N NONE
answers.

Intersecting Faces: Non-negative Matrix Factorization With New Guarantees

Let f be the feature that we have currently popped from the queue Q, i.e. the feature that we are currently exploring.
Let Tf be the induced subtree of T with root at f and leaves the set off(f). Note that Tf is the true underlying subtree
(that is, not the subtree that we have found), and it is also D-ary. The Adaptive Hybrid algorithm now randomly samples
triples of examples from off(f) to query. If Tf is a star, then there are no new features to be found and this subroutine
stops after θ queries. Otherwise, when θ = O(D2 log M

δ), from Lemma 1, with probability ≥ 1 − δ
M , it returns a new

feature with high probability. Therefore the probability of finding allM features is≥ 1−δ. The algorithm terminates after
O(N +MD2 log M

δ) total queries.

B Analysis of the independent feature model

Proof. (Proof of Lemma 2) Since pi = 1/2, the probability of any feature distinguishing a triple is 3/8. Therefore, a
homogenous crowd will only output the last, least salient feature if it the only distinguishing feature, which happens with
exponentially small probability (3/8)(5/8)M−1 for a random triple. Given N < 1.1M examples, there N3 < 1.13M

triples. By the union bound, with probability less than (3/8)(5/8)M−11.13M < 1/2 will any of them elicit the last
feature.

Proof. (Proof of Lemma 3) Let f be any feature, and let xi and xj be a randomly drawn pair of examples from D. The
probability that f satisfies the double query (xi, xj) is 2pf (1− pf); moreover, the probabilty that f is the only feature that
satisfies this query is ∆f = 2pf (1− pf)

∏
g 6=f (1− 2pg(1− pg)).

Now consider the process of drawing N/2 pairs of random examples from D. The probability that the i-th pair (x, y) is
such that the double query (x, y) is uniquely satisfied by feature f is ∆f . The first part of the lemma follows from a coupon
collector’s argument. The proof of the second part is very similar.

Proof. (Proof of Lemma 4) Let fj be a feature with frequency pj , and let (x1, x2, x3) be a randomly drawn triple of
examples. The probability that fj satisfies the triple query (x1, x2, x3) is qj = 3p2j (1 − pj). Let F be the full set of
features. Suppose we have already seen the set of features S. Then the probability that the next query will discover an
unseen feature is at least: 1 −

∏
j∈F\S(1 − qj), and therefore the expected time to discover the next unseen feature is at

most:
1

1−
∏
j∈F\S(1− qj)

This quantity is an decreasing function of qj . Thus, the worst case order of discovering features that maximizes the expected
discovery time is from high to low values of qj .

WLOG we will assume that q1 ≥ q2 ≥ . . . ≥ qM . The total expected discovery time is at most:

M∑
j=1

1

1−
∏
i≥j(1− qi)

≤
M∑
j=1

1

1− (1− qj)

Proof. (Proof of Lemma 5) Suppose that the features are discovered according to some order π. Then, the probability a
random triple elicits the last feature i is: ∏

i<N

(1− qπ(N))qπ(N)

Of course this is minimized when qπ(N) is minimized. Although a general adaptive algorithm can have a structure to the
triples it chooses, we can use the union bound to argue to bound the probability that any triple elicits the last feature. In
this case, each triple is essentially random.

C Analysis of other query models

Proof. (Proof of Proposition 4) Let the examples be X = L ∪ R where L = {x1, x2, . . . , x`} and R = {x′1, . . . , x′r}.
Let F = {f} ∪ G ∪ H where the feature f satisfies f(x) = 1 if x ∈ L and f(x) = 0 if x ∈ R. Define the features

Intersecting Faces: Non-negative Matrix Factorization With New Guarantees

g1, g2, . . . , g` ∈ G to be gi(x) = 1 for all x ∈ L \ {xi} and gi(xi) = 0, otherwise. Define H = {h1, . . . , hr} where
hj(x) = 0 for all x ∈ R \{x′j} and hj(x) = 1, otherwise. It is clear that the query L−R necessarily recovers f , the query
∅ − {xi} recovers gi, and the query {x′j} − ∅ recovers hj . Moreover, for any query L′ −R′ with xi 6∈ |L′|, it is clear that
gi is as good an answer as f . Conversely, if x′j 6∈ R′, then clearly hj is as good an answer as f . Hence, if the feature f is
“least salient” in that other features are always returned if possible, no `′ − r′ query will recover f .

