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Crowdsourced Labels from Multiple Contexts

Abstract
Recent probabilistic models can predict ground-
truth from crowdsourced labels much more ac-
curately than majority voting, but conventional
models group all labels into the same homo-
geneous context. In contrast, existing crowd-
sourcing platforms collect labels for multiple
aims and datasets, from a shared pool of con-
tributors. This paper presents a method to effi-
ciently extract highly-quality information, from
the contributors’ annotations, across many het-
erogeneous contexts, such as qualitatively dif-
ferent domains or different question types. Our
model can rapidly and incrementally learn con-
text specific information, such as ground-truth
and annotator expertise, as well as information
that transfers between contexts, e.g. honesty and
exactitude. We describe how to efficiently per-
form inference on our model, which makes use
of Variational-Bayes approximations and we pro-
pose a novel approach to approximate problem-
atic hyperparameters. We evaluate our approach,
and discuss applications for our model.

1. Introduction
The recent popularity of crowdsourcing, has been accom-
panied by a growth in methods for inference with the as-
sociated data. Particular success has been achieved in la-
belling tasks, where for task-instances (objects) the un-
known ground-truth is inferred using labels from a crowd
of semi-trusted annotators. When sourcing labels from
multiple semi-trusted contributors, sources will sometimes
disagree on an object. In the case of humans, this can be
due to many factors including: annotator bias, data ambi-
guity, lack of expertise, transcription errors, laziness, mis-
understanding the task and malicious intent.

While majority voting can accurately determine the un-
derlying ground-truth (or gold-standard) of the data (with
sufficient labels under reasonable conditions (Snow et al.,
2008)), greater accuracy with fewer labels can be had by

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

building models of annotator reliability based on consis-
tency of agreement with other annotators, and/or perfor-
mance on test examples, e.g. (Raykar et al., 2010; Welin-
der & Perona, 2010; Karger et al., 2011). One practical
use of these methods is to perform classification or regres-
sion from semi-trusted labels (Raykar et al., 2010; Venanzi
et al., 2013). Alternatively, the ground-truth predictions
may have value in themselves or more general use (Ipeirotis
et al., 2010). Further, annotator reliability estimates can be
used to more quickly acquire additional information, either
by blacklisting the unreliable (Welinder & Perona, 2010),
or with a more nuanced pairing of annotators with objects
(Dickens & Lupu, 2014; Ipeirotis et al., 2010; Yan et al.,
2011; Chen et al., 2013). This paper presents a new crowd-
sourcing model for inferring ground-truth and annotator ex-
pertise, for objects from a wide variety of different contexts
(requiring different skills and knowledge), where informa-
tion learnt in one context can transfer to others. Further, we
give an approximate inference approach, using Variational-
Bayes techniques, to efficiently infer model variables, in-
cluding troublesome hyperparameter distributions.

Most existing crowdsourcing models place all labels within
the same homogeneous context, where all labelling tasks
are assumed to be similar, with consistent errors and biases,
e.g. (Dawid & Skene, 1979; Raykar et al., 2010; Rzhetsky
et al., 2009; Welinder & Perona, 2010; Karger et al., 2011).
In contrast, crowdsourcing tasks are often grouped within
similar contexts, both methodologically e.g. (Chilton et al.,
2013; Bragg et al., 2013; Welinder et al., 2010), and in real
world applications e.g. Amazon’s MTurk and the Zooni-
verse project (Zooniverse). Moreover, annotators typically
contribute across many such contexts. Under such circum-
stances, the above approaches would either have to: model
each context separately, failing to share information about
annotators across contexts; or pool all tasks together, losing
differences between contexts.

More sophisticated models can infer individual object dif-
ficulty (Whitehill et al., 2009) within a context, or more
generally model various confounding characteristics for
annotators and objects (Welinder et al., 2010). In a re-
cent paper, (Mo et al., 2013) develop a cross-context
model, which models confounding characteristics in a
multi-context model for binary labels, and use Markov-
chain Monte-carlo (MCMC) sampling to infer model pa-
rameters. We present a slightly simpler model that nonethe-
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Crowdsourced Labels from Multiple Contexts

less captures inter- and intra-contextual information simi-
larly, and which extends easily to categorical and real la-
bels. Further, we develop a highly efficient and scalable
inference method for this.

This paper makes the following contributions. We present a
novel context-aware model, with a variational approxima-
tion method. In order to estimate problematic distributions
in the context-aware model, we develop a novel estima-
tion procedure, which can be applied to other probabilis-
tic models with Dirichlet hyperparameter distributions. We
also develop a novel variational-Bayes estimation approach
to fit an influential single-context model from (Raykar
et al., 2010). We evaluate our methods against competing
technologies, and show that our single-context variational
method competes with equivalent approaches on synthetic
and real data, and our context-aware method outperforms
single-context approaches in a number of ways.

In the remainder of this paper: Section 2 outlines an exist-
ing work which informs our approach; Section 3 presents
our context aware model and estimation approach; Section
4 reports results of experiments to test the efficacy of our
method; and Section 5 reflects on the material presented.

2. Background
Recent research on crowdsourcing has applied probabilis-
tic models to large scale problems with semi-trusted meta-
data, e.g. (Raykar et al., 2010; Welinder & Perona, 2010).
Most such approaches focus on simple meta-data for dis-
crete data items, e.g. binary, categorical, ordinal, real
scalars and vectors, and simultaneously estimate the hidden
ground-truth, and the expertise of the annotators (Dawid &
Skene, 1979; Raykar et al., 2010; Rzhetsky et al., 2009;
Welinder & Perona, 2010; Karger et al., 2011). These ap-
proaches exploit the principle that reliable annotators tend
to agree with each other more often than those prone to ran-
dom mistakes, bias, or error. Fig. 1(a) recreates the no fea-
tures trust model used in (Raykar et al., 2010), but renames
some variables for notational consistency. The model as-
sumes a set of objects O (a meta-data requirement), and
for each object i ∈ O an unknown ground-truth zi (the re-
quired meta-data). Each annotator, j ∈ A, is not entirely
reliable, and when queried about zi gives label lij , which
we observe, and may (or may not) be equal to zi. This un-
certainty is modelled by j’s expertise (alt. reliability) xj ,
e.g., for binary labels, j’s sensitivity and specificity. The
set of labelled pairs isL ⊆ O×A. Ground-truth parameter
υ controls the distribution over ground-truth values. φ and
θυ are hyper-parameters. The earlier model from (Dawid
& Skene, 1979) is the same except they fix υ and omit θυ .

Section 3 presents a context-aware model for semi-trusted
labels. The dense connectivity in this model precludes ex-

ij ∈ Li ∈ O j ∈ A

lijzi xj

υ
φ

θυ

(a) The no features trust model from (Raykar et al.,
2010).

c ∈ C
ij ∈ Lci ∈ Oc j ∈ Ac j ∈ A

lcijzci xcj φj

ξcυc
θυ θξ

θφ

(b) Our context-aware model, presented in Section 3.

Figure 1. (a) single-context and (b) context-aware probabilistic
models for semi-trusted labels.

act inference (Bishop, 2007), and so some alternative ap-
proximate method will be required. Our approximate in-
ference combines Variational-Bayes with a novel approach
for hyperparameter distributions.

While Expectation Maximisation is a popular choice for in-
ference in crowdsourcing models (Dawid & Skene, 1979;
Raykar et al., 2010; Welinder & Perona, 2010). EM only
predicts the mode of the distribution of interest, can be un-
stable when data is sparse, and inaccurate when distribu-
tions are not well behaved, e.g. multi-modal or skewed.
To avoid these shortfalls (and those of other ML/MAP ap-
proaches, e.g. Laplace), we propose using variational ap-
proximations, which provide more robust approximations,
with little (or no) computational overhead compared to EM.
Two common variational methods are 1) mean field approx-
imations as in (Parisi, 1988); and 2) local Variational ap-
proximation as in (Jaakkola & Jordan, 2000).

Mean field approximations are typically applied such
that, for observed variables, X , and latent variables (and
parameters), Z, the posterior distribution p(Z|X) =
p(X|Z)p(Z)

/
p(X), is approximated by q(Z) ≈ p(Z|X),

where q assumes independence between groups of vari-
ables in Z. The best approximation, q?, is that which min-
imises the KL-divergence between q and p (Jaakkola & Jor-
dan, 2000), e.g.

q? = argmin
q

DKL(q(Z)||p(Z|X))
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Crowdsourced Labels from Multiple Contexts

and this can be shown to occur when1

ln q?(Zi) = EZ/i(ln p(X,Z)) + const (1)

where Zi is a group of variables in Z, and EZ/i is the ex-
pectation over variables in Z not in Zi. Repeatedly assign-
ing each q from the expectation in Eqn. (1) leads to conver-
gence on q?. Mean field approximations can lead to accu-
rate approximations of the mean of p(Z|X), but typically
underestimate model uncertainty.

Local variational inference is used when estimation re-
quires the expectation of a complex quantity (function),
f(x), over some distribution of interest, say p(x) for
x ∈ X . This in turn, requires the evaluating the in-
tegral Exf(x) =

∫
x∈X f(x)p(x)dx. If this calculation

is intractable, an approximation can be made by max-
imising an integral over lower bound functions f̂θ, i.e.
θ? = argmaxθ Exf̂θ(x). An equivalent approximation
minimises an upper bound on f(x).

A related variational approach to ours is Expectation prop-
agation (EP) (Minka, 2001). This is typically more robust
to local maxima, but can have convergence issues (Bishop,
2007). Complex distributions can also be fit to data using
sampling methods, e.g. (Teh et al., 2004), e.g. Markov-
chain Monte-carlo sampling. Appropriate sampling meth-
ods are guaranteed to converge on the true distribution, but
tend to be very computationally demanding compared to
variational approximations (Bishop, 2007), can have prob-
lems converging with complex models (Gelman & Hill,
2007), and must re-sample from scratch when new data
is added, unlike EM and Variational approaches. We use
elements of both mean field theory and local variational
approximation for our inference.

3. A Context-Aware Model of Trust
This section outlines our context-aware model, and shows
how to approximate model parameters using a combination
of Variational-Bayes and our novel approximation tech-
nique for hyperparameter distributions. Fig. 1(b) shows
the context-aware model for semi-trusted labels, which
duplicates the single-context model from (Raykar et al.,
2010) across multiple contexts, with additional informa-
tion shared across contexts. More precisely, for each con-
text c ∈ C, ground-truth bias parameter υc controls the
distribution over ground-truths zci, for all context objects
i ∈ Oc. Annotator j has context expertise xcj , and provides
observed noisy labels lcij for some objects i. In addition,
annotator j has trust φj , which captures context indepen-
dent labelling characteristics for j, and each context c has
challenge ξc, capturing annotator independent information
about labelling uncertainty in c. Expertise xcj depends on
both φj and ξc. θυ , θξ and θφ are fixed hyperparameters.

1The const variable captures terms independent of Zi.

The joint probability for this model is

p(L,Z,X,Υ,Ξ,Φ|θυ , θξ , θφ )

=
∏
j∈A

p(φj |θφ )
∏
c∈C

(
p(υc|θυ )p(ξc|θξ )

∏
i∈Oc

p(zci|υc)

∏
j∈Ac

p(xcj |φj , ξc)
∏

ij∈Lc

p(lcij |zci, xcj)
)

where L, Z, X, Υ, Ξ, Φ are collections of all labels
lij , ground-truths zci, expertise parameters xcj , ground-
parameters υc, challenge parameters ξc, and trust param-
eters φj respectively.

The topology of our model and the observed quantities
guarantee certain independence properties (Bishop, 2007)
– indicated below by ∆

=, and for tractability we make addi-
tional independence assumptions – indicated by ass.

= , in:

q(Z,X,Υ,Ξ,Φ)
∆
= q(Z,Υ)q(X,Ξ,Φ)
ass.
= q(Z)q(Υ)q(X)q(Ξ)q(Φ) (2)

Using Eqn. (1) and these assumptions (which we briefly
discuss later in this section), we can write the optimal log
variational distribution for each unobserved variable. For
instance, the distribution of expertise parameters satisfies

ln q?(xcj) = EZc

( ∑
i∈Ocj

ln p(lcij |zci, xcj)
)

+ Eφj ,ξc

(
p(xcj |φj , ξc)

)
+ const (3)

where collections with subscript c or j respectively con-
tain only values corresponding to context c or annotator
j, e.g. Zc = {zci|i ∈ Oc}. Similar equalities exist for
ln q?(zci), ln q?(υc), ln q?(ξc) and ln q?(φj). In practice,
we approach these optimal estimates by iteratively evaluat-
ing expectations on the right and assigning these to distri-
butional forms on the left, with appropriate normalisation
taking care of the constant terms (Bishop, 2007).

3.1. Context-Aware Model for Binary Labels

Our context-aware model described can readily support bi-
nary, 1-of-K categorical, real scalar and real vector labels.
For clarity and brevity, we consider the special case where
labels and ground-truth values are binary, i.e. zci ∈ {0, 1},
and lcij ∈ {0, 1} for all relevant i, j and c (supporting K
categories is a simple extension). We define the expertise
of annotator j in context c, to be xcj = (xcj0, xcj1) – the
specificity and sensitivity of j in context c. Our choice for
the probability of label lcij reflects that in (Raykar et al.,
2010) – a product of two Bernoulli distributions, i.e.

p(lcij |zci, xcj) = (4)

x
(1−zci)(1−lcij)

cj0 (1− xcj0)
(1−zci)lcij (1− xcj1)

zci(1−lcij)
x
zcilcij
cj1

This means that the total likelihood for labels within
context c is a product of binomial distributions, i.e.
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p(Lc|Zc,Xc) =
∏
ij p(lcij |zci, xcj), and is hence conju-

gate to a product of beta distributions (one for each speci-
ficity or sensitivity parameter). Therefore, the variational
conjugate prior over expertise parameters is a joint beta dis-
tribution, parametrised by αcjmn, m,n ∈ {0, 1}, where

p(xcj |ξc, φj) =
∏

m∈{0,1}

Beta(xcjm|αcjmm, αcjmm̄) (5)

with m̄ the complement of m. We interpret αcjmm as the
prior evidence for annotator j correctly labelling items of
ground-truth m, with αcjmm̄ for incorrect labelling. These
prior weights depend on the challenge, ξc, and trust, φj , pa-
rameters. We assume a separate challenge and trust compo-
nent for each α-parameter, and a simple summative model
as this aids model interpretation2, i.e.

αcjmn = ξcmn + φjmn + 1 (6)

Adding the 1 forces ξcmn ≥ 0 – and can now be inter-
preted as evidence for the prototypical annotator in context
c marking an object of ground-truth m with label n. Simi-
larly, φjmn ≥ 0, and is the equivalent evidence for annota-
tor j in a general context. This means ξcmm = ξcmm̄ =
φjmm = φjmm̄ = 0, corresponds to zero information
about xcjm. Introducing Eqn. (6) into Eqn. (3) gives

ln q
?
(xcj) =

∑
m∈{0,1}

(
(α
′
cjmm − 1) ln xcjm (7)

+ (α
′
cjmm̄ − 1) ln(1− xcjm)

)
+ const

α
′
cjmn = Eξcmn + Eφjmn (8)

+
∑
i∈Oc

(
(1− lcij)

(1−n)
lcij

n
(1− Ezci)

(1−m)
Ezci

m
)

As anticipated, this is in the form of a joint-Beta distri-
bution, and is conjugate with the prior. A similar reasoning
process helps us determine distributions and parameters for
zci, υc, so we just give the highlights here.

Ground-truth values By a similar inspection, we see
that the log-variational over ground-truth values is the form
of a Bernoulli distribution. Given a prior bias of υc, it fol-
lows that

p(zci|υc) = (1− υc)(1−zci)υzcic and

q?(zci) = (1− υ′ci)(1−zci)υ′zcici (9)

Here, the updated bias, υ′ci, is given by υ′ci = υ̃′ci1/(υ̃
′
ci0 +

υ̃′ci1) where for m ∈ {0, 1}

ln υ̃′cim = E ln
(
(1− υc)(1−m)υmc

)
(10)

+
∑
j

(
(1− lcij)E ln

(
x

(1−m)
cj0 (1− xcj1)m

)
+ lcijE ln

(
(1− xcj0)(1−m)xmcj1

))
2There is no conventional choice for this relationship, and an

alternative might be multiplicative composition, e.g. αcjmn =
ξcmnφjmn + 1.

As noted, evaluation of the expertise parameters, Eqn. (7),
requires the expected value of this distribution, namely
Ezci = υ̃′ci1/(υ̃

′
ci0 + υ̃′ci1).

Ground-truth parameters Applying Eqn. (1) to the υc
parameters, the log-variational again takes the form of a
log Beta distribution. We therefore define the conjugate
prior, p(υc|θυ) = Beta(υc|β1, β0) with parameters θυ =
{β1, β0}, and the variational posterior becomes

q(υc) = Beta(υc|β′c1, β′c0) (11)

β′cm = βm +
∑
i∈Oc

(Ezci)
m(1−Ezci)

(1−m)

We can now evaluate the required expectations for Eqn.
(9), using Eqn.s (7) and (11), and a standard result for the
expectation of a log-Beta variable (Bishop, 2007).

E ln υc = ψ(β′c1)− ψ(β′c1 + β′c0) (12)

E ln(1− υc) = ψ(β′c0)− ψ(β′c1 + β′c0)

E lnxcjm = ψ(α′cjmm)− ψ(α′cjmm + α′cjmm̄)

E ln(1− xcjm) = ψ(α′cjmm̄)− ψ(α′cjmm + α′cjmm̄)

This uses the digamma function ψ(x) = d
dx ln Γ(x), which

in turn depends the Gamma function, Γ, (Abramowitz &
Stegun, 1964) (a generalisation of the factorial ‘!’).

3.2. Challenge and Trust Parameters

Up to this point, we use a fairly conventional Variational
Bayes approach (Bishop, 2007; Jaakkola & Jordan, 2000).
Notable features being, a joint Bernoulli likelihood (Eqn.
(4)), and our αcjmm parameters (Eqn. (6)). However, the
challenge parameters, ξc, and trust parameters, φj , give rise
to problematic distributions, as we now show.

Within the binary label model, the challenge parameter
ξcmn is the evidential weight given to a random annota-
tor in context c, for assigning the label n to a random ob-
ject with ground-truth m. Similarly, the trust parameter
ξjmn is the evidential weight given to annotator j in a ran-
dom context, for assigning the label n to a random object
with ground-truth m. Both parameters types are similar,
so we focus on challenge parameters, ξc. As with previ-
ous parameters, we begin by defining an approximate vari-
ational distribution using Eqn. (1) and independence as-
sumptions from Eqn. (2), the resulting form factorises as:
q(ξc) = q(ξc00, ξc01)q(ξc10, ξc11). We now make two fur-
ther independence assumptions for each context, namely

q(ξcm0, ξcm1)
ass.
= q(ξcm0)q(ξcm1) for m ∈ {0, 1} (13)

After some simplification this gives
ln q

?
(ξcmn) = Eξcmn̄,Φc

(
Gcmn

)
+ ln p(ξcmn|θξ ) (14)

+ ξcmn
∑
j∈Ac

Excj0 ln
(
p(lcij = n|zci = m,xcj)

)
+ const

which uses Eqn. (4) and

Gcmn =
∑
j∈Ac

ln
Γ(ξcmn + φjmn + ξcmn̄ + φjmn̄ + 2)

Γ(ξcmn + φjmn + 1)
(15)
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These distributions q?(ξcmn) do not have a standard form,
and there is no natural choice for conjugate prior. How-
ever, we now show how to approximate ln q?(ξcmn), by
replacing the Gcmn term with a term of the form a ln ξcmn
(a > 0). With this approximate form for the likelihood, and
a conjugate Gamma prior, we can, in turn, approximate the
variational posterior with a Gamma distribution, q̃, where

q?(ξcmn) ' q̃(ξcmn) ∝ ξ(a′cmn−1)
cmn e(−b′cmnξcmn) (16)

We argue that this is reasonable since: i) the exponen-
tial factor (far right) matches that in q? precisely for all
ξcmn, and this term will rapidly dominate for large ξcmn;
and ii) the remaining factor in q? scales in a quasi-power
way. Identification of this candidate family of approxi-
mating distributions forms one of the contributions of our
work. In the next section, we show how to approximate the
target distribution by iteratively matching gradients of q?

and q̃ around the high probability region of q̃.

Reflexive Local-Variational Approximation Knowing
our q̃(ξcmn) will be Gamma distributed, we define chal-
lenge and trust priors

p(ξcmn|θξ) = Gamma(ξcmn|amn, bmn)

p(φjmn|θφ) = Gamma(φjmn|dmn, emn)

with θξ = {amn, bmn|m,n ∈ {0, 1}} and θφ =
{dmn, emn|m,n ∈ {0, 1}}. The approximate posteriors
of these four challenge and four trust parameters are then
given by

p(ξcmn|Xc, θξ ) ' q̃(ξcmn) = Gamma(ξcmn|a′cmn, b
′
cmn) (17)

p(φjmn|Xj , θφ ) ' q̃(φjmn) = Gamma(φjmn|d′jmn, e
′
jmn)

We now describe how to find these approximate posteriors
with a general challenge parameter, ξcmn. The correspond-
ing rate parameter, b′cmn, takes the linear terms from the
Gamma prior and likelihood (Eqn. (14)) to give

b
′
cmn = bmn −

∑
j∈Ac

Excj ln
(
p(lcij = n|zci = m,xcj)

)
(18)

For the appropriate constant Hcmn, the shape parameter,
a′cmn, approximates remaining (non-constant) terms of the
posterior with:

(a′cmn − 1) ln ξcmn +Hcmn (19)

To approximate q?(ξcmn) around some given point ξ̄cmn,
we take the log of both sides of Eqn. (17) and match gradi-
ents at ξ̄cmn with

a′mn = ξ̄cmn
d

dξcmn

(
Eξcmn̄,Φc Gcmn

)∣∣∣∣
ξ̄cmn

+ amn (20)

where
d

dξcmn

(
Eξcmn̄,Φc Gcmn

)∣∣∣∣
ξ̄cmn

' (21)

∑
j∈Ac

(
ψ(ξcmn+Eφjmn+Eξcmn̄+Eφjmn̄+2)− ψ(ξcmn+Eφjmn+1)

)

Eqn. (21) requires a Local-Variational approximation to
push the expectation term into the Gcmn function from
Eqn. (15) (see Section 2.1 in the supplementary materials).
All that is now needed is a way to choose the point ξ̄cmn
at which to evalutate Eqn. (20). This approximation is ex-
act at some point ξ̄cmn, a lower bound below ξ̄cmn and a
close approximation elsewhere (see Section 2.2 in the sup-
plementary materials).

Reflexive Fitting As discussed in Section 2, convention-
ally local-variational methods approximate the expectation
of a function with respect to a known distribution. We wish
to choose a good value of ξ̄cmn so that q̃(ξcmn) estimates
p(ξcmn|Xc, θξ) well in regions of high density. However,
a good choice of ξ̄cmn depends itself on p(ξcmn|Xc, θξ).
This is a catch 22 situation: we cannot (cheaply3) find the
expectation in Eqn. (20) until we approximate q?, but we
cannot approximate q? until we perform the expectation.
Instead, we make the following observation. The varia-
tional approximation needs to be most accurate close to
the majority of the probability density of p(ξcmn|Xc, θξ).
Therefore, a natural choice is to fit around the mean, i.e.
ξ̄cmn = Eξcmn. As the mean is not known in advance,
we make an initial estimate for ξ̄cmn, then evaluate a′mn
using Eqn. (20). We can then estimate the mean with
Eξcmn = a′mn

/
b′mn, before repeating the process. More

precisely, starting with initial estimate ξ̃(0) and ã(0), re-
spectively for Eξcmn and a′mn, we apply the following two
updates until convergence,

ã(i+1) ← ξ̃(i)

(
G′cmn(ξ̃(i)) +

amn − 1

ξ̃(i)

)
+ 1 and

ξ̃(i+1) ←
ã(i+1)

b′cmn

At convergence, i → ∞, we assign a′mn = ã(∞) and
ξ̄cmn = ξ̃(∞), and the expected values are estimated as:
Eξcmn ' ξ̄cmn. Fig. 3.2 illustrates this approach. The
trust parameters, φjmn, are found in a similar way.

Validity of Approach We make a number of approxima-
tions to make our approach tractable, and it is reasonable
to ask whether these are sufficiently flexible to allow the
model to learn appropriately. To justify our choices, we
first note that independence assumptions and lower-bounds
have led to very successful and accurate variational ap-
proximations elsewhere (Bishop, 2007; Jaakkola & Jordan,
2000). In the results section, we compare the predictive
accuracy of our approach applied to single context models
versus the more conventional EM approximation. For the
multi-context model, we make similar assumptions to al-
low the hyperparameter distributions to be learnt. We show
how well this performs as part of the full model.

3Quadrature could be used here but it is expensive, see Sec. 4.
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Figure 2. For parameters ξcmn and φjmn distributed as p(x) =
f(x)e−bx, we assume the form p(i)(x) ∝ f(i)(x)e−bx and fit
d
dx

ln f(i+1)

∣∣
x̄i

= d
dx

ln f
∣∣
x̄i

around the mean x̄i = Ep(i)
x.

Finally, while many existing variational techniques directly
minimise the KL-divergence between the target and ap-
proximating distributions 4. Our hyperparameter approx-
imation does not do so directly. Instead, our approach
matches exactly the order of decay of the target distribu-
tion for large variable values, and uses gradient matching
at the mean to improve the approximation for smaller vari-
able values. Hence the distribution is approximated for
a range of values, not just at a single point, and we ar-
gue that this has similar characteristics to KL minimisa-
tion. Also, hyperparameters have a less direct, and conse-
quently weaker influence on the accuracy of a model’s pre-
dictions. Therefore, even imperfect approximations of hy-
perparameter distributions can improve predictive accuracy
of a model versus no fitting, as we see in the next section.

4. Results
In this section, we investigate the inferential and predic-
tive accuracy on 1 synthetic dataset and 2 datasets from
the literature: the headline affect score dataset from (Snow
et al., 2008), and the Cub200 birds dataset from (Welinder
& Perona, 2010). In all these experiments, method MV in-
dicates a naive majority vote. Methods of the form SC*
artificially pool all data into a single-context5, and meth-
ods of the form I* fit each context independently. All SC*
and I* methods are paired with three single-context meth-
ods: all *R fit the model shown in Fig. 1(a), using the EM
method from (Raykar et al., 2010); all *XV use our novel
variational fitting of the same model; and all *V use a novel
variational fit of a simpler model, excluding ground-truth
bias estimation (as in (Dawid & Skene, 1979)). Finally,
MB is the context-aware approach outlined in Section 3.

In all experiments, probabilistic methods use non-

4This is not necessarily implied by the term variational.
5Sometimes referred to as data-pooling (Mo et al., 2013)

informative ground-truth parameter priors of (β1, β0) =
(1., 1.), except *V which cannot, and instead assumes
a prior-bias of υc = 0.5 for all c. *R, *V and *XV
methods assume weakly informative expertise priors of
(αcjmm, αcjmm̄) = (2., 1.) for all c and j; this breaks
model symmetry by assuming the average annotator is
marginally more likely to be correct than incorrect. For
the same reason, MB assumes all challenge and skill shape
priors amn = dmn = 1 for all m,n; but assumes rate pri-
ors on correct answers of bmm = emm = 0.2, while rate
priors on incorrect answers are bmm̄ = emm̄ = 0.5.

(a) Ground-truth misclassification rate

(b) Expertise errors (RMSE)

Figure 3. Ground-truth and expertise estimation errors on syn-
thetic data, while scaling #labels per object, #objects per context,
#annotators, or #contexts. Defaults are #labels per object=2, #ob-
jects per context=10, #annotators=80, and #contexts=20.

Figs. 6 (a) and (b) show performance on synthetic data,
simulated by sampling from instantiations of the context-
aware model, see Fig. 1(b); these use significantly stronger
challenge and trust priors 6, than for the inference, to en-

6Synthetic data parameters are amm = dmm = 4, bmm =
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courage high quality labels. Fig. 6 (a) shows that the
ground-truth misclassification rate for MB is consistently
equal to or better than all I* and SC* methods. I* methods
suffer the most here, and this suggests that the advantage of
pooling data (in SC* methods), outweighs uncertainty over
ground-truth bias. The expertise errors in Fig. 6 (b), show
MB substantially outperforms other methods, and directly
reflects the advantages of challenge and trust parameters.

(a) Affect as context (b) Headline as context

Figure 4. Ground-truth errors on headline affect dataset, while
scaling #labels.

We next investigate the headline affect data from (Snow
et al., 2008), generated by a crowd of non-expert labellers
scoring news headlines for anger, disgust, fear, joy, sad-
ness, and surprise on a scale of 1 to 100. As in (Mo et al.,
2013), we convert labels to binary false if less than 50
and true otherwise. Ground-truth relies on three experts
labelling the same headlines, likewise converted to binary
values. We can either model contexts as question-type with
each headline as an object; or with headline as context, and
each question as an object. In (Mo et al., 2013), they use
question-type as context, and Fig. 4 shows performance as
number of labels scales. This shows peculiar behaviour;
methods SCR, SCXV, IR, IXV and MB all perform well
with 2 or 3 labels per object, but method performance then
degrades as labels are added, until worse than MV. This
suggests that the models do not capture the data proper-
ties well and consequently overfit. IXV and IR are least
affected by this suggesting little similarity between con-
texts. Finally, SCV and IV methods perform badly here
suggesting extreme ground-truth bias. Using headline as
context the performance is much better, in particular for IR,
IXV and MB methods. The experiment from (Mo et al.,
2013) first synthetically upsamples the data, by fitting a
model (not described) to the total data, generating addi-
tional labels, then testing on a restricted set of upsampled
data. They report average performance across all contexts
of 0.84. This is marginally better than our IR, IXV and MB
performance on headline-as-affect (∼0.82 with as few as 3
labels per object).

Fig. 5 reports results on the Cub200 birds dataset from Cal-
tech (Cub200) (Welinder & Perona, 2010), with responses

emm = 1, amm̄ = dmm̄ = 1 and bmm̄ = emm̄ = 2.

Figure 5. Ground-truth errors on Cub200 birds data, while scaling
#objects per context, #annotators, or #contexts. The default #la-
bels per object=3, #objects per context=10, #annotators=10, and
#contexts=17.

from crowdsourced workers (annotators), to questions
on the presence/absence of attributes, e.g. curved
beak shape, in images of birds. We define independent bi-
nary attributes from these to use as contexts, with ran-
domly sampled (attribute id, image id) pairs as
objects. Available objects and annotators are restricted to
guarantee required label coverage. There is no objective
ground-truth, so we use majority vote from all labels as
a proxy (most objects had 5 labels in total). Notice that
the accuracy degrades for more labels, and is most likely
an artifact of choosing the majority vote as ground-truth.
Nonetheless, our MB algorithm clearly outperforms both
SC* and I* methods. This is particularly apparent when
there are fewer labels per object or objects per context, or a
large number of annotators overall. This suggests a possi-
bly greater variation between contexts in the Cub200 data.
However, I* methods are here less stable than SC*, so there
is some value in pooling information across contexts here.

To illustrate the characteristics of our novel approximation
approach, we show an example fit, see Figs. 4 (a) and (b).
Fig. 4 (a) shows one dimensional conditional distributions
for trust parameters φj00 and φj01 of a single annotator j.
Each target distribution (blue) is of the form from Eqn. 3,
with all other parameters as estimates from a 10 annotator
10 context model trained on Cub200 data. The reflexive
approximation (Eqn. (17)) is shown in green. Means are
indicated by vertical bars. Fig. 4 (b) shows the joint dis-
tribution (green) of the two approximations from the left
figure, and the joint distribution (blue) that would pertain if
assumptions of the form Eqn. (13) had not been made; the
joint means are indicated by crosses.

It is the accuracy of the mean estimates from these reflex-
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ive approximations that informs the rest of the inference
(see Eqns. (8), (12), and (21)). The target distributions in
Fig. 4 (a) are horizontal (φj00) and vertical (φj01) slices
through the blue distribution from Fig. 4 (b) positioned at
the green cross. These recover the means of the condition-
als very accurately (this is a typical result). However, as
the number of contexts increases, the distance between the
means of the joint distributions increases (Fig. 4 (b)). This
is due to the strong covariance between the two variables in
the target distribution (again this is typical). Therefore, we
conclude that while the reflexive fitting is remarkably accu-
rate in recovering the conditional means, the assumptions
from Eqn. (13) are the most likely cause for degraded per-
formance with larger models. Note that a method to learn
Dirichlet parameters is given in (Minka, 2000). However, it
does not readily deal with our summative Dirichlet param-
eters from Eqn. 6, nor, as a maximum-likelihood method,
would it accurately learn the distribution mean as desired.

(a) (b)

Figure 6. Example distributions for trust parameters φjmn from
Cub200 data, using model predictions for other parameters. (a)
Variational marginals, with targets (blue) and approximations
(green). Means are vertical bars. (b) Variational joint target
q(φj00, φj01) (blue) and approximation (green) is joint of inde-
pendent approximations from (a). Means marked with +.

5. Discussion and Conclusion
This paper presents a context aware model for ground-truth
inference with semi-trusted labels, and shows a significant
accuracy improvement gained by using this approach. This
would be of value to any investigator working with crowd-
sourced labels from multiple contexts, and is most benefi-
cial with sparse data when information about annotators’
reliability can be shared between contextual domains. Our
approach also provides very high quality predictions about
the expertise of particular annotators within a given con-
text, and this information can be exploited by methods that
efficiently harvest new labels, e.g. (Chen et al., 2013; Dick-
ens & Lupu, 2014; Karger et al., 2011; Welinder & Per-
ona, 2010). Interestingly, expertise estimates can be given
for contexts without any existing labels, so this could be
used to transfer learning to unseen contexts. Moreover,
the newly emerging crowdsourcing market is one with few
regulations and worker protections (Kittur et al., 2013). It
is important that those of us making use of crowdsourced

labour are not exploitative. The higher quality context free
trust estimates provided by our model could be key in help-
ing maintain good relationships with our contributors, for
instance, using trust as part of performance related pay
schemes.

Some probabilistic crowdsourcing models use latent vari-
ables to capture hidden characteristics, such as one or
more dimensions of annotator skill and question difficulty
(Welinder et al., 2010; Whitehill et al., 2009); this includes
the context-aware model from (Mo et al., 2013). Exten-
sions to our model could incorporate these ideas, but the
increased complexity of the model may require sampling
based estimation (as with (Mo et al., 2013)). We argue that
models supporting approximate inference are greatly pre-
ferred, as these scale much more favourably, and can be in-
crementally updated where new data is continually added.

The paper also identifies a family of distributions that are
good candidates for approximating Dirichlet hyperparame-
ter distributions. Further, we present a novel self referential
local variational technique to approximate these distribu-
tion within our model. We do not present a formal proof
of convergence for the procedure here, but we do show that
it can estimate challenge and trust parameters sufficiently
well to outperform models that do not have such parame-
ters. Directions for future work includes a formal proof of
convergence, and possibly developing improved methods,
for instance to capture the covariance between hyperpa-
rameters. Such approaches could be used to develop other
similar context-aware methods based on different single-
context models, e.g. those in (Welinder et al., 2010; White-
hill et al., 2009; Venanzi et al., 2013), or with any proba-
bilistic models that have hyper-parameters on Dirichlet dis-
tributions, e.g. topic modelling with Dirichlet processes
(Teh et al., 2004), where there could be big computational
savings over sampling approaches. Multi-level models are
also common elsewhere to test co-dependence, causal rela-
tionships and hidden factors in data (Gelman & Hill, 2007).
Our general approach could be applied there too, perhaps
with other troublesome distributions as well, such as the
hyperparameters for Gamma distributions.

To conclude, while single context crowdsourcing models
have had great success improving the quality of informa-
tion extracted versus simple majority voting, there is ad-
ditional informational value to be had where contributions
are collected across multiple contexts. Moreover, this ap-
pears of most benefit when considering contributors’ per-
formance across contexts. Sampling approaches, while
flexible, require costly retraining as new data is added, and
this is not well suited to applications with a continuous in-
put stream of contributions. Approximate inference may
provide a way to overcome these limitations, but more ad-
vanced approximation techniques may yet be needed.
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