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Abstract

Consider the problem of identifying the un-
derlying qualities of a set of items based on
measuring noisy comparisons between pairs
of items. The Bradley-Terry-Luce (BTL) and
Thurstone models are the most widely used
parametric models for such pairwise compar-
ison data. Working within a standard min-
imax framework, this paper provides sharp
upper and lower bounds on the optimal error
in estimating the underlying qualities under
the BTL and the Thurstone models. These
bounds are are topology-aware, meaning that
they change qualitatively depending on the
comparison graph induced by the subset of
pairs being compared. Thus, in settings
where the subset of pairs may be chosen, our
results provide some principled guidelines for
making this choice. Finally, we compare these
error rates to those under cardinal measure-
ment models and show that the error rates in
the ordinal and cardinal settings have identi-
cal scalings apart from constant pre-factors.
We use this result to investigate the relative
merits of cardinal and ordinal measurement
schemes.

1 Introduction

In an increasing range of applications, it is of in-
terest to elicit judgements from non-expert humans.
Elicitation of preferences of consumers about prod-
ucts, either directly or indirectly, is a common prac-
tice [GCD81]. The data gathering process has been
facilitated by the emergence of several new “crowd-
sourcing” platforms, such as Amazon Mechanical Turk,
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that have become powerful, low-cost tools for collect-
ing human judgements [KDC+11, LRR11, vMM+08].
Crowdsourcing is employed not only for collection of
preferences, but also for collecting data: for instance,
rating responses of an online search engine to search
queries [Kaz11], or counting the number of malaria
parasites in an image of a blood smear [LOAF12].
Crowdsourcing has also become an indispensable tool
for labeling data for training machine learning al-
gorithms [HDY+12, RYZ+10, DDS+09]. Competitive
sports implicitly elicit comparative qualities between
individuals or teams [Ros07,HMG07]. Peer-grading in
massive open online courses (MOOCs) [PHC+13] is an
application gaining increasing popularity.

A common method of elicitation is through pairwise
comparisons. For instance, the decision of a consumer
to choose one product over another constitutes a pair-
wise comparison between the two products. Workers
in a crowdsourcing setup are often asked to compare
pairs of items: for instance, they might be asked to
identify the better of two possible results of a search
engine, as shown in Figure 1a. Competitive sports such
as chess or basketball also involve sequences of pairwise
comparisons of players or teams.

One use of pairwise comparisons is to estimate the in-
herent “qualities” or “weights” of the items being com-
pared (e.g., skill levels of chess players, relevance of
search engine results, etc.) The data obtained from
pairwise comparisons can be modeled as a noisy sam-
ple of these latent (real-valued) weights. Noise can
arise from a variety of sources. When objective ques-
tions are posed to human subjects, noise can arise from
their di↵ering levels of expertise. In a sports competi-
tion, many sources of randomness can influence the
outcome of any particular match between a pair of
competitors. Thus, one important goal is to estimate
the latent qualities based on noisy data in the form
of pairwise comparisons. A related problem is that
of experimental design: assuming that we can choose
the subset of pairs to be compared (e.g., in designing a
chess tournament), what is the best such choice? Char-
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What%is%the%distance%between%%
the%following%pairs%of%ci4es?%

%

San$Francisco$and$Aus.n%%%
miles%

Who%do%you%think%is%OLDER?%

!% !%

%Which%image%is%more%relevant%
for%the%search%query%‘INTERNET’?%

!% !%

How%relevant%is%this%image%for%%
the%search%query%'INTERNET'?%

/%100%

How%many%words%are%misspelled%
in%this%paragraph?%%

words%are%misspelled%

But that is the beginning of a new story - the 
story of the gradual reneual of a man, the 
story of his gradual regeneration, of his pasing 
from one world into another, of his intiation into 
a new unknown life. That might be the subject 
of a new story, but our present story is ended. 

Which%tone%corresponds%to%a%%
HIGHER%number%on%a%phone%keypad?%

!% !%
!% !%

%Which%circle%is%BIGGER?%%

“Simple, fast but sure cure” 

Rate%this%tagline%for%a%
healthcare%plaMorm%

/%10%

(a) Asking for a pairwise comparisons.

/ 100 

How relevant is this image for 
the search query 'INTERNET'? 

(b) Asking for a numeric score.

Figure 1: An example of eliciting judgements from people: rating the relevance of the result of a search query.

acterizing the fundamental di�culty of estimating the
weights will allow us to make this choice judiciously.
These tasks are the primary focus of this paper.

In more detail, we consider the two most pop-
ular models for pairwise comparisons: the
Thurstone (Case V) model [Thu27], and the Bradley-
Terry-Luce (BTL) model [BT52, Luc59]. The
Thurstone (Case V) model has been used in a va-
riety of both applied [Swe73, Ros07, HMG07] and
theoretical papers [B+05, Kra08, Nos85]. The BTL
model has been similarly popular in both theory
and practice [Nos85, AWL+98, KR82, HH10, LRS12,
GCD81, KZ87]. Both models involve a latent real
number as the weight of each item, and the outcome of
each comparison is some noisy version of the pairwise
comparison between the underlying scores of the two
items.

With this context, the contributions of this paper are
three-fold. First, we derive upper and lower bounds on
the minimax estimation rates under the two models.
Our upper and lower bounds on the squared `

2

esti-
mation error agree up to constant factors: to the best
of our knowledge, despite the voluminous literature on
these two models, this provides the first sharp charac-
terization of the associated minimax rates. Moreover,
our error guarantees provide guidance to the practi-
tioner in assessing the minimax number of pairwise
comparisons to be made in order to guarantee a pre-
specified error. Our second contribution is to derive
bounds that are topology-aware, meaning that they de-
pend on the comparison graph induced by the subset
of pairs that are compared. Our theoretical analysis
reveals that the spectral gap of the graph Laplacian
plays a fundamental role, and provides guidelines for
the practitioner on how to choose the subset of compar-
isons to be made. Third, we employ our sharp bounds
to investigate when it is better to compare than to
score. When eliciting data, one often has the liberty to
ask for either cardinal values or for pairwise compar-
isons from the human subjects. These two options are
illustrated in Figure 1. One would like to adopt the ap-
proach that would lead to a better estimate. One may

be tempted to think that cardinal elicitation methods
are superior, since each cardinal measurement gives a
real-valued number whereas an ordinal measurement
provides at most one bit of information. Our bounds
show that, perhaps surprisingly, the scaling of the er-
ror in the cardinal and ordinal settings is identical up
to constant pre-factors. As we demonstrate, this result
allows for a comparison of cardinal and ordinal data
elicitation methods in terms of the per-measurement
noise alone, independent of the number of measure-
ments and the number of items.

2 Problem formulation

We begin with some background followed by a precise
formulation of the problem.

2.1 Generative models

Given a collection of d items to be evaluated, suppose
that each item has a certain numeric weight, and a
comparison of any pair of items is generated via a com-
parison of the two weights in the presence of noise. We
represent the weights as a vector w

⇤ 2 Rd, so item
j 2 [d] has weight w

⇤
j

. Now suppose that we make n

pairwise comparisons: if comparison i 2 [n] pertains to
items (a

i

, b

i

), then it can be described by a di↵erencing
vector x

i

2 Rd, with entry a

i

equal to 1, entry b

i

equal
to �1, and the remaining entries set to 0.

In terms of this notation, the Thurstone (Case V)
model [Thu27] is based on making n i.i.d. observations
of the form

y

i

= sign

⇢

hx
i

, w

⇤i+ ✏

i

�

, for i 2 [n],

(Thurstone)

where ✏

i

⇠ N(0,�2) is i.i.d. observation noise.
On the other hand, the Bradley-Terry-Luce (BTL)
model [BT52, Luc59] involves obtaining samples
y

i

2 {�1, 1} drawn independently from the distribu-
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tion

P
⇥

y

i

= 1;x
i

, w

⇤⇤ =
1

1 + exp
��hx

i

, w

⇤i
�

�

for i 2 [n].

(BTL)

In both models, the parameter � plays the role of a
noise parameter, with a higher value of � leading to
more uncertainty in the comparisons. In each case,
the value of � is assumed to be known. Note that both
Thurstone and BTL models are invariant to shifts in
w

⇤, that is, they do not di↵erentiate between the vector
w

⇤ and the shifted vector w⇤+1, where 1 is the all-ones
vector. Therefore, we assume that h1, w⇤i = 0 in order
to enforce identifiability of the vector of weights.

While our primary focus is analysis of the pairwise-
comparison setting, for comparison purposes we also
analyze analogous cardinal settings where each obser-
vation is real valued. In the Cardinal model we con-
sider, each observation consists of a numeric evaluation
of a single item,

y

i

= hu
i

, w

⇤i+ ✏

i

for i 2 [n], (Cardinal)

where u

i

in this case is a coordinate vector with one
of its entries equal to 1 and remaining entries equal
to 0, and ✏

i

is independent Gaussian noise N(0,�2).
One may alternatively elicit cardinal values of the dif-
ferences between pairs of items

y

i

= hx
i

, w

⇤i+ ✏

i

for i 2 [n], (Paired Linear)

where ✏

i

are i.i.d. N(0,�2). We term this model the
Paired Linear model.

2.2 Fixed design and the graph Laplacian

Let us begin by analyzing the estimation error when
a fixed subset of pairs is chosen for comparison. Of
interest to us will be the comparison graph defined by
these chosen pairs, with each pair inducing an edge in
the graph. Edge weights are determined by the fraction
of times a given pair is compared. The analysis in the
sequel reveals the central role played by the Laplacian
of this weighted graph. Note that we are operating
in a fixed-design setup where the graph is constructed
o✏ine and does not depend on the observations.

In the ordinal models, the ith measurement is related to
the di↵erence between the two items being compared,
as defined by the measurement vector x

i

2 Rd. We
let X 2 Rn⇥d denote the measurement matrix with
the vector x

T

i

as its i

th row. The Laplacian matrix L

associated with this di↵erencing matrix is given by

L : =
1

n

X

T

X =
1

n

n

X

i=1

x

i

x

T

i

. (1)

By construction, for any vector v 2 Rd, we have
v

T

Lv =
P

j 6=k

L

jk

(v
j

� v

k

)2, where L

jk

is the frac-
tion of the measurement vectors {x

i

}n
i=1

in which items
(j, k) are compared.

The Laplacian matrix is positive semidefinite, and has
at least one zero-eigenvalue, corresponding to the all-
ones eigenvector. The Laplacian matrix induces a
graph G(L) on the vertex set V = {1, . . . , d}, in which
a given pair (j, k) is included as an edge if and only if
L

jk

6= 0, and the weight on an edge (j, k) equals L

jk

.
Throughout our analysis, we assume that this graph is
connected, since otherwise, the quality score vector w

is not identifiable. Note that the Laplacian matrix L

induces a seminorm1 on Rd, given by

ku� vk
L

: =
q

(u� v)TL(u� v). (2)

A major focus is on the minimax risk in terms of the
Laplacian seminorm.

2.3 Minimax framework

Finally, we review the standard notion of minimax risk
used in this paper. For a given family of generative
models, each weight vector w induces an associated
distribution P

w

. We let w(P) denote the set of allowed
vectors w, and P denote the family of induced distri-
butions. For a given weight vector w and collection of
comparison vectors {x

i

}n
i=1

, suppose that we observe n
i.i.d. samples {y

i

}n
i=1

generated according to P
w

. Our
goal is to estimate the unknown weight vector, and an
estimator bw is any measurable mapping from the ob-
servations {y

i

}n
i=1

to the space w(P).

For a given seminorm ⇢, we consider the minimax risk
given by

M
n

(w(P); ⇢2) : = inf
bw

sup
w

⇤2w(P)

E[⇢( bw,w⇤)2], (3)

where the expectation is taken over the samples
{y

i

}n
i=1

. The minimax risk characterizes the perfor-
mance of the best estimator, as measured in the semi-
norm ⇢ squared, in a worst-case sense over the family
w(P).

In this paper, we analyze the minimax risk for two
choices of seminorm ⇢, namely the Laplacian semi-
norm k bw � w

⇤k
L

from (2), and the Euclidean norm
k bw � w

⇤k
2

. We denote these risks by M
n

�

w(P); k · k2
L

�

and M
n

�

w(P); k · k2
2

�

, respectively.

3 Sharp bounds on the minimax risk

This section presents the main results of the paper:
sharp minimax bounds on the estimation error under

1
A seminorm di↵ers from a norm in that the seminorm

of a non-zero element is allowed to be zero.
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the pairwise comparison models introduced earlier in
Section 2.1. Theorem 1 below bounds this minimax
risk in each of the three models. In all of the state-
ments, we use c

1`

, c

2`

, c

1u

, c

2u

, c

1

, c

2

to denote positive
numerical constants, independent of the sample size n,
number of items d and other problem-dependent pa-
rameters. For a subset of the results, we assume that
each coordinate of the weight vector w⇤ is bounded as

kw⇤k1  B (4)

for some constant B. We use L

† to denote the Moore-
Penrose pseudoinverse of L.

Theorem 1 (Bounds on minimax rates). (a) For

the paired linear model, the minimax rate is

bounded as

c

1`

�

2

d

n

 M
n

�

Paired Linear; k · k2
L

�

 c

1u

�

2

d

n

.

(b) For the Thurstone model with B-bounded weight

vector (4), and sample size n � c

2

�

2

tr(L

†
)

B

2

, the

minimax rate is bounded as

c

2`

�

2

d

n

 M
n

�

Thurstone; k · k2
L

�

 c

2u



2

�

2

d

n

,

where  : = �(2B/�)(1� �(2B/�)).

(c) For the BTL model with B-bounded weight vec-

tor (4) and sample size n � c

3

�

2

tr(L

†
)

B

2

, the mini-

max rate is bounded as

c

3`

�

2

d

n

 M
n

�

BTL; k · k2
L

�

 c

3u

e

4B

�

�

2

d

n

.

We defer detailed proofs of this and subsequent re-
sults to the Appendix. The upper bounds follow from
an analysis of the maximum likelihood estimator. In-
terestingly, maximum likelihood estimation in each of
these cases turns out to be a convex optimization prob-
lem (see, for instance, [TG11] for a proof in the Thur-

stone case). On the other hand, the lower bounds
are based on a combination of information-theoretic
techniques and carefully constructed packings of the
parameter set w(P). The main technical di�culty is
in constructing a packing in the seminorm induced by
the Laplacian L.

We note that the minimax bounds in the Thurstone

and the BTL models depend on kw⇤k1. The bounds
must necessarily be governed by kw⇤k1 since it can
be shown that the minimax error under an unbounded
kw⇤k1 will be infinite. Informally, this is related to
the di�culty of estimating very small (or very large)
probabilities that can arise in the two models for large
kw⇤k1.

Negahban et al. [NOS14] also provided minimax
bounds for the BTL model in the special case of dif-
ferencing vectors {x

i

}n
i=1

chosen uniformly at random.
They focused on this case to complement their analy-
sis of a random walk-based algorithm. In their analy-
sis, there is a gap between the achievable rate of the
MLE, and the lower bound. In contrast, our analy-
sis eliminates this discrepancy and shows that MLE is
an optimal estimator (up to constant factors) in the
terms of the minimax rate M

n

( ; k · k2
L

). In indepen-
dent and concurrent work Hajek et al. [HOX14] con-
sider the problem of estimation in the Plackett-Luce
model, which extends the BTL model to comparisons
of two or more items. They derive bounds on the mini-
max error rates under this model which are tight up to
logarithmic factors. In contrast, our results are tight
up to constants and, as we emphasize in the follow-
ing section, provide deeper insights into the role of the
topology of the comparison graph.

4 Role of graph topology

In certain applications, one may have the liberty to
decide which pairs are compared. The results of Sec-
tion 3 demonstrated the role played by the Laplacian
of the comparison graph in the estimation error. We
now employ these results to derive guidelines towards
designing the comparison graph, i.e., towards answer-
ing the question: “If one can make d measurements,
then which pairs should be compared?”.

Let us focus on upper bounds in the ordinal setting,
and consider estimation error in the squared `

2

norm.
As in Theorem 1, we assume that the graph induced
by the comparisons is connected. Apart from model-
specific constants, the minimax risks also share the
same scaling—namely

M
n

�

w(P); k · k2
2

�

- �

2

d

n�

2

(L)
, (6)

where �

2

(L) is the second smallest eigenvalue of the
Laplacian matrix L. In order to derive this expression,
we used the fact that hw, 1i = 0.

As a graph Laplacian, the second smallest eigenvalue
is determined by the topology of the chosen compar-
isons. In order to illustrate, let us consider five canon-
ical examples: the barbell graph, the complete graph,
a bounded degree expander, the path graph and the
lattice graph. In each case, we assume that the sam-
ples are distributed evenly along the edges of a fixed
graph, and that the sample size n is su�ciently large.
Using standard matrix concentration inequalities, it is
straightforward to extend our analysis to the setting
of random chosen comparisons from a fixed graph (see
for instance [Oli09]). The properties of the Laplacian
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matrices of these graphs can be found in [BH11] and
other texts on the subject.

(a) Barbell graph: For an even number d of vertices,
the barbell graph consists of two cliques of d/2
disjoint sets of vertices with a single edge between
them. Suppose n �

�

d/2

2

�

+ 1. In this case we ob-
tain that �

2

(L) = ⇥( 1

d

3

) and the squared `

2

error

scales as M
n

�

w(P); k · k2
2

�

- d

4

n

.

(b) Complete graph: In the regime n �
�

d

2

�

, we have

�

2

(L) = d

(d
2

)
, so that the squared `

2

error scales as

M
n

�

w(P); k · k2
2

�

- d

2

n

.

(c) Degree-k expander: A similar argument as in the
previous case shows that if n � kd, then the error
scales as M

n

�

w(P); k · k2
2

�

- d

2

n

.

(d) Path graph: For the path graph,
we have �

2

(L) = ⇥(1/d3) and hence

M
n

�

w(P); k · k2
2

�

- d

4

n

.

(e) 2D lattice: In this case we obtain �

2

(L) = ⇥( 1

d

2

),

and M
n

�

w(P); k · k
2

�

- d

3

n

.

To summarize, we see the squared `

2

error scaling as
d

2

n

for the complete graph and the degree-k expander.
We conjecture that this is in fact the best possible scal-
ing. Observe that the degree-k expander requires a
sample size lower bounded as n � kd while the com-
plete graph requires n �

�

d

2

�

, so in practice, we should
prefer a low-degree expander (at least for low sample
sizes). On the other hand, for other graphs—including
the path, lattice and barbell graphs—the error scaling
is considerably worse, showing that these are are poor
choices for the topology of comparisons.

5 Cardinal versus ordinal

measurements

In this section, we compare two approaches towards
eliciting data: a score-based “cardinal” approach and
a comparison-based “ordinal” approach. In a cardinal
approach, evaluators directly enter numeric scores as
their answers (Figure 1b), while an ordinal approach
involves comparing (pairs of) items (Figure 1a).

There are obvious advantages and disadvantages asso-
ciated with either approach. On one hand, the cardinal
approach allows for very fine measurements. For in-
stance, the cardinal measurements in Figure 1 can take
any value between 0 and 100, whereas an ordinal mea-
surement is binary. One might be tempted to go even
further and argue that ordinal measurements necessar-
ily give less information, for one can always convert a

set of cardinal measurements into ordinal, simply by
ordering the measurements by value. If this conver-
sion were valid, the data processing inequality [CT12],
would then guarantee that estimators based on ordinal
data can never outperform estimators based on cardi-
nal data. However, this conversion assumes that cardi-
nal and ordinal measurements are su↵er from the same
type of statistical fluctuation. In contrast, ordinal mea-
surements avoid calibration issues that are frequently
encountered in cardinal measurements [TG11], such as
the evaluators’ inherent (and possibly time-varying) bi-
ases, or tendencies to give inflated or conservative eval-
uations. Ordinal measurements are also recognized to
be easier or faster for humans to make [Bar03,SBC05],
allowing for more evaluations with the same amount of
time, e↵ort and cost.

The lack of clarity regarding when to use a cardinal
versus an ordinal approach forms the motivation of
this section. Can we make as reliable estimates from
paired comparisons as from numeric scores? How much
lower does the noise have to be for comparative mea-
surements to be preferred over cardinal measurements?
The answers to these questions will help in determining
how responses should be elicited.

In order to compare the cardinal and ordinal methods
of data elicitation, we focus on a setting with evenly
budgeted measurements. In accordance with the fixed-
design setup assumed throughout the paper, we choose
the vectors x

i

a priori. We consider the Gaussian-noise
models Thurstone and Cardinal. In order to cap-
ture the fact that the amount of noise is di↵erent in
the cardinal and ordinal settings, we will denote the
standard deviation of the noise in the cardinal setting
as �

c

, and retain our notation of � for the noise in the
ordinal setting. In order to bring the two models on
the same footing, we measure the error in terms of the
squared `

2

-norm.

Let � denote the standard Gaussian c.d.f., and define

b

`

(�, B) : = c

2`

�(2B/�)(1� �(2B/�)),

b

u

(�, B) : =
c

2u

(�(2B/�)(1� �(2B/�)))2
,

b(�, B) : =

⇠

c

2

�(2B/�)(1� �(2B/�))�2

B

2

⇡

.

Observe that b

`

, b
u

and b are independent of the pa-
rameters n and d.

With these preliminaries in place, we now compare the
minimax error in the estimation under the cardinal and
ordinal settings.

Theorem 2. Let kw⇤k1  B for some known value

B, and suppose n is a multiple of d(d� 1)b(�, B), and
that in the Cardinal model we observe each coordi-

nate n/d times for a known noise parameter �

c

. Then
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the minimax risk is given by

M
n

�

Cardinal ; k · k2
2

�

= �

2

c

d

2

n

.

Suppose that in the Thurstone model we observe each

pair n/

�

d

2

�

times with known noise parameter �. Then

the minimax risk is sandwiched as

�

2

b

`

(�, B)
d

2

n

 M
n

�

Thurstone ; k · k2
2

�

 �

2

b

u

(�, B)
d

2

n

.

In the cardinal case, when each coordinate is measured
the same number of times, the Cardinal model re-
duces to the well-studied normal location model, for
which the MLE is known to be the minimax estima-
tor and its risk is straightforward to characterize (see
Lehmann and Casella [LC98], for instance). In the or-
dinal case, the result follows from the general treatment
in Section 3.

Let us now return to the question deciding between the
cardinal and the ordinal methods of data elicitation.
Suppose that we believe the Gaussian-noise models to
be reasonably correct, and the per-observation errors �
and �

c

under the two settings are known or can be sep-
arately measured. Theorem 2 shows that the scaling of
the minimax error in the cardinal and the ordinal set-
tings is identical in terms of the problem parameters
n and d. Our result thus allows for the choice to be
made based only on the parameters (�,�

c

, B) and not
on n and d: the ordinal approach incurs a lower min-
imax error when b

u

(�, B)�2

< �

2

c

while the cardinal
approach is better o↵ in terms of minimax error when-
ever b

`

(�, B)�2

> �

2

c

. Tightening the (�, B)-dependent
constants in the bounds would lead to a sharp deci-
sion boundary between the cardinal and the ordinal
approaches.

6 Experiments and simulations

In this section we describe experiments on the crowd-
sourcing platform Amazon Mechanical Turk (MTurk),
MTurk.com, and simulations using synthetically gen-
erated data. We summarize the experiments and enu-
merate the results in this section, and refer the reader
to Appendix C for more details. Throughout this sec-
tion, estimation procedures are executed via maximum
likelihood under the Thurstone model. In simula-
tions with synthetic data, the true vector w

⇤ is gen-
erated by first drawing a d-length vector from N(0, I)
and then shifting it to ensure that hw⇤

, 1i = 0. In the
synthetic case, the ML estimator is supplied with the
correct value of �, and in the data obtained from exper-
iments from MTurk, the estimator is supplied the best-
fitting value of � obtained via 3-fold cross-validation.

6.1 Dependence on topology

We investigate the dependence of the squared `

2

esti-
mation error on the topology of the comparison graph.
We consider the following five topologies: path, bar-
bell, complete, expander and a 2D-lattice. For the ex-
pander graph, we use the Margulis-Gabber-Galil con-
struction [Mar73,GG81] to form an 8-regular expander
graph. For any chosen graph topology, the n di↵erence
vectors are selected as one edge each drawn uniformly
at random (without replacement) from the comparison
graph. Recall that our theory from Section 4 predicts
the complete and expander graphs to perform the best,
and the path and barbell graphs to fare the worst. Also

recall that our theory predicts the error kw⇤� bwk2

2

d

to
scale as 1/n in the complete and expander topologies.

6.1.1 Synthetic simulations

We first performed simulations using data generated
synthetically from the Thurstone model. Figure 2
plots the estimation error under various topologies of
the comparison graph. Observe in the figure that the
error is the lowest under the complete graph, and the
highest under the barbell and the path graphs. This
observation is consistent with our theoretical predic-
tions.

6.1.2 Experiments on Mechanical Turk

We conducted three experiments that required the
workers to make ordinal choices. The experiments in-
volved (i) identifying the bigger of a pair of circles,
(ii) identifying the older of two people from their pho-
tographs, (iii) identifying the pair of cities which are
farther apart. For each experiment, we recruited 140
workers on MTurk, and assigned them to one of the
five topologies uniformly at random. Figure 3 plots the
squared `

2

estimation error for the three experiments
under the five topologies considered. We see that the
relative errors are generally consistent with our theory,
with the complete graph exhibiting the best perfor-
mance and the path graph faring the worst.

6.2 Cardinal vs. ordinal

We now consider the problem of choosing between the
cardinal and the ordinal means of data elicitation.

6.2.1 Measuring Per-observation Error

We conducted seven di↵erent experiments on MTurk to
investigate the possibility of a data-processing inequal-
ity between the elicited cardinal and ordinal responses:
Are responses elicited in ordinal form equivalent to
data obtained by first eliciting cardinal responses and
then subtracting pairs of items? Our experiments lead
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(a) d = 64 (b) d = 256

Figure 2: Estimation error under di↵erent topologies in the simulations using synthetic data.

(a) Area of circle

(b) Age from photograph

(c) City distances

Figure 3: Estimation error under di↵erent topologies in the experiments conducted on MTurk.

us to conclude that this is generally not the case: con-
verting cardinally collected data into ordinal (by sub-
tracting pairs of responses) generally led to a higher
amount of noise as compared to that in data that is
elicited directly in ordinal form.

For each of the seven experiments, we recruited 100
workers, and assigned each worker randomly to either
the ordinal or the cardinal version of the task. For
the experiments in which we had access to “ground
truth” solutions, we directly computed the fraction of
responses that were incorrect in the ordinal and the
cardinal-converted-to-ordinal data. For the remaining
experiments, we computed the “error” as the fraction
of responses that disagreed with each other. Note that
we did not run any estimation procedure on the data:
we only measured the noise in the raw responses.

The results are tabulated in Figure 4a. If the cardi-
nal measurements could always be converted to ordi-
nal measurements with the same noise level as directly
eliciting ordinal responses, then it would be unlikely
for the amount of error in the ordinal setting to be
smaller than that in the cardinal setting. Figure 4a
shows that converting cardinal data to an ordinal form
often results in a higher (and sometimes significantly
higher) per-sample error in the (raw) responses than
direct elicitation of ordinal evaluations. This absence
of data-processing inequality may be explained by the
argument that the inherent evaluation process in the
humans is not the same in the cardinal and ordinal

cases: humans do not perform an ordinal evaluation
by first performing cardinal evaluations and then com-
paring them [Bar03,SBC05]. One can thus assume that
in many applications, we will have � < �

c

.

6.2.2 Estimation error

For sake of completeness, we also computed the esti-
mation error in the cardinal and ordinal settings. We
consider data from the three experiments for which we
have access to the ground truth. We normalize the true
vector to have kw⇤k1 = 1 and set B = 1. For each
of the three experiments, we execute 100 iterations of
the following procedure. Select five workers from the
cardinal and five from the ordinal pool of workers uni-
formly at random. (The number five is chosen based
on practical systems [WIP11, PHC+13].) We run the
maximum-likelihood estimator of theCardinalmodel
on the data from the five workers selected from the car-
dinal pool, and the maximum-likelihood estimator of
the Thurstone model on the data from the five work-
ers of the ordinal pool. Note that unlike Section 6.2.1,
the cardinal data here is not converted to ordinal.

The results are plotted in Figure 4b. To put the results
in perspective of the rest of the paper, let us also recall
the per-sample errors in these experiments from Fig-
ure 4a. Observe that in the experiment of estimating
distances, the per-sample error in the cardinal data
was significantly higher than the ordinal data. This
is reflected in the results of Figure 4b where the es-
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(a)

(b)

Figure 4. Results from experiments run on MTurk comparing the ordinal and cardinal methods of eliciting

responses: (a) Fraction of incorrect responses. (b) Estimation error.

(a) d = 64 (b) d = 256

Figure 5: Estimation error under a misspecified model (simulations from synthetic data).

timator on the ordinal data outperforms (in terms of
the squared `

2

error) than the estimator on the cardi-
nal data. On the other hand, the task of identifying
the number of spelling mistakes involved a per-sample
noise that was comparable across the two settings, and
hence the estimator on the cardinal data scores over
the ordinal one. Our theory needs to tighten the con-
stants in order to address this regime.

6.3 Model misspecification

We investigated the e↵ects of model mismatches via
synthetic simulations. In the data generation process,
every data point was generated from the BTL model
with a probability ✏ 2 [0, 1] and from the Thurstone

model with a probability (1 � ✏). We set � = 1 under
both models. Inference was performed assuming the
entire data was generated from Thurstone, but us-
ing the correct values of � and B. Figure 5 plots the
error observed as ✏ was varied from 0 to 1. Observe
that when ✏ = 0, the estimation error drops linearly
with a slope of �1 (on the log-log scale) as predicted
by our theory. On the other hand, when ✏ is reasonably
high, the error reduces much slower as n increases. An
analytical investigation of model misspecification un-
der the Thurstone and BTL models is a topic for
future work.

7 Conclusions

We derive topology-aware minimax error bounds under
two widely studied preference-elicitation models, and
demonstrated their usefulness in guiding the selection
of comparisons and in guiding the choice of the elici-
tation paradigm (cardinal versus ordinal) when these
options are available. One potential direction for future
work would be to investigate improved data collection
mechanisms, for instance adaptive schemes where we
focus our e↵ort on the hardest comparisons. A second
direction would be to characterize the precise thresh-
olds for making the choice between the cardinal and
ordinal approaches. Finally, the Thurstone and BTL
models are parametric idealizations that have proved
useful in a wide variety of applications. In future
work, it would be interesting to investigate more flex-
ible non-parametric pairwise comparison models (see
for instance, the paper [Cha12]).

Acknowledgements

This work was partially supported by the AFOSR
grant FA9550-14-1-0016, and NSF grants CIF-31712-
23800 and DMS-1107000 to MJW. In addition, the
work of NS was partially supported by a Microsoft Re-
search fellowship.



Shah, Balakrishnan, Bradley, Parekh, Ramchandran, Wainwright

References

[AWL+98] Donald R Atkinson, Bruce EWampold, Su-
sana M Lowe, Linda Matthews, and Hyun-
Nie Ahn. Asian American preferences for
counselor characteristics: Application of
the Bradley-Terry-Luce model to paired
comparison data. The Counseling Psychol-

ogist, 26(1):101–123, 1998.

[B+05] Tom Bramley et al. A rank-ordering
method for equating tests by expert judg-
ment. Journal of Applied Measurement,
6(2):202–223, 2005.

[Bar03] William Barnett. The modern theory of
consumer behavior: Ordinal or cardinal?
The Quarterly Journal of Austrian Eco-

nomics, 6(1):41–65, 2003.

[BH11] Andries E Brouwer and Willem H Haemers.
Spectra of graphs. Springer, 2011.

[BT52] Ralph Allan Bradley and Milton E Terry.
Rank analysis of incomplete block de-
signs: I. the method of paired comparisons.
Biometrika, pages 324–345, 1952.

[Cha12] Sourav Chatterjee. Matrix estimation by
universal singular value thresholding, 2012.

[CT12] Thomas M Cover and Joy A Thomas. El-

ements of information theory. John Wiley
& Sons, 2012.

[DDS+09] Jia Deng, Wei Dong, Richard Socher, Li-
Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A
large-scale hierarchical image database. In
IEEE Conference on Computer Vision and

Pattern Recognition, 2009, pages 248–255.
IEEE, 2009.

[GCD81] Paul E Green, J Douglas Carroll, and
Wayne S DeSarbo. Estimating choice prob-
abilities in multiattribute decision making.
Journal of Consumer Research, pages 76–
84, 1981.

[GG81] Ofer Gabber and Zvi Galil. Explicit con-
structions of linear-sized superconcentra-
tors. Journal of Computer and System Sci-

ences, 22(3):407–420, 1981.

[HDY+12] Geo↵rey Hinton, Li Deng, Dong Yu,
George E Dahl, Abdel-rahman Mohamed,
Navdeep Jaitly, Andrew Senior, Vin-
cent Vanhoucke, Patrick Nguyen, Tara N
Sainath, et al. Deep neural networks
for acoustic modeling in speech recogni-
tion: The shared views of four research

groups. Signal Processing Magazine, IEEE,
29(6):82–97, 2012.

[HH10] Sandra Heldsinger and Stephen Humphry.
Using the method of pairwise compari-
son to obtain reliable teacher assessments.
The Australian Educational Researcher,
37(2):1–19, 2010.

[HMG07] Ralf Herbrich, Tom Minka, and Thore
Graepel. Trueskill: A Bayesian skill rating
system. Advances in Neural Information

Processing Systems, 19:569, 2007.

[HOX14] Bruce Hajek, Sewoong Oh, and Ji-
aming Xu. Minimax-optimal inference
from partial rankings. arXiv preprint

arXiv:1406.5638, 2014.

[Kaz11] Gabriella Kazai. In search of quality in
crowdsourcing for search engine evaluation.
In Advances in information retrieval, pages
165–176. Springer, 2011.

[KDC+11] Firas Khatib, Frank DiMaio, Seth Cooper,
Maciej Kazmierczyk, Miroslaw Gilski, Szy-
mon Krzywda, Helena Zabranska, Iva Pi-
chova, James Thompson, Zoran Popović,
Mariusz Jaskolski, and David Baker. Crys-
tal structure of a monomeric retroviral pro-
tease solved by protein folding game play-
ers. Nature structural & molecular biology,
18(10):1175–1177, 2011.

[KR82] Kenneth J Koehler and Harold Ridpath.
An application of a biased version of the
Bradley-Terry-Luce model to professional
basketball results. Journal of Mathemati-

cal Psychology, 25(3), 1982.

[Kra08] Paul FM Krabbe. Thurstone scaling as
a measurement method to quantify sub-
jective health outcomes. Medical care,
46(4):357–365, 2008.

[KZ87] Zahid Y Khairullah and Stanley Zionts. An
approach for preference ranking of alterna-
tives. European journal of operational re-

search, 28(3):329–342, 1987.

[LC98] E.L. Lehmann and G. Casella. Theory of

Point Estimation. Springer Texts in Statis-
tics, 1998.

[LOAF12] Miguel Angel Luengo-Oroz, Asier Arranz,
and John Frean. Crowdsourcing malaria
parasite quantification: an online game for
analyzing images of infected thick blood
smears. Journal of medical Internet re-

search, 14(6), 2012.



Estimation from Pairwise Comparisons: Sharp Minimax Bounds with Topology Dependence

[LRR11] ASID Lang and Joshua Rio-Ross. Us-
ing Amazon Mechanical Turk to transcribe
historical handwritten documents. The

Code4Lib Journal, 2011.

[LRS12] Peter John Loewen, Daniel Rubenson, and
Arthur Spirling. Testing the power of ar-
guments in referendums: A Bradley–Terry
approach. Electoral Studies, 31(1):212–221,
2012.

[Luc59] R Duncan Luce. Individual Choice Behav-

ior: A Theoretical Analysis. New York:
Wiley, 1959.

[Mar73] Grigorii Aleksandrovich Margulis. Explicit
constructions of concentrators. Problemy

Peredachi Informatsii, 9(4):71–80, 1973.

[Nos85] Robert M Nosofsky. Luce’s choice
model and Thurstone’s categorical judg-
ment model compared: Kornbrot’s data
revisited. Attention, Perception, & Psy-

chophysics, 37(1):89–91, 1985.

[NOS14] Sahand Negahban, Sewoong Oh, and De-
vavrat Shah. Rank centrality: Ranking
from pair-wise comparisons. arXiv preprint

arXiv:1209.1688, 2014.

[Oli09] Roberto Imbuzeiro Oliveira. Concentration
of the adjacency matrix and of the laplacian
in random graphs with independent edges.
arXiv preprint arXiv:0911.0600, 2009.

[PHC+13] Chris Piech, Jonathan Huang, Zheng-
hao Chen, Chuong Do, Andrew Ng, and
Daphne Koller. Tuned models of peer as-
sessment in MOOCs. In International Con-

ference on Educational Data Mining, 2013.

[Ros07] Daniel Ross. Arpad Elo and
the Elo rating system, 2007.
http://en.chessbase.com/post/arpad-
elo-and-the-elo-rating-system.

[RYZ+10] Vikas C Raykar, Shipeng Yu, Linda H
Zhao, Gerardo Hermosillo Valadez, Charles
Florin, Luca Bogoni, and Linda Moy.
Learning from crowds. The Journal of

Machine Learning Research, 99:1297–1322,
2010.

[SBC05] Neil Stewart, Gordon DA Brown, and
Nick Chater. Absolute identification by
relative judgment. Psychological review,
112(4):881, 2005.

[Swe73] John Swets. The relative operating charac-
teristic in psychology. Science, 182(4116),
1973.

[TG11] Kristi Tsukida and Maya R Gupta. How to
analyze paired comparison data. Technical
report, DTIC Document, 2011.

[Thu27] Louis L Thurstone. A law of comparative
judgment. Psychological Review, 34(4):273,
1927.

[vMM+08] Luis von Ahn, Benjamin Maurer, Colin
McMillen, David Abraham, and Manuel
Blum. Recaptcha: Human-based charac-
ter recognition via web security measures.
Science, 321(5895):1465–1468, 2008.

[WIP11] Jing Wang, Panagiotis G Ipeirotis, and
Foster Provost. Managing crowdsourcing
workers. In The 2011 Winter Confer-

ence on Business Intelligence, pages 10–12,
2011.



Shah, Balakrishnan, Bradley, Parekh, Ramchandran, Wainwright

Supplementary material for

Estimation from Pairwise Comparisons:

Sharp Minimax Bounds with Topology Dependence

A Proof of Theorem 1

We split the proof into two parts, corresponding to the upper and lower bounds respectively. The proofs for
di↵erent models involve some common techniques, and so we begin by introducing these auxiliary underlying
results.

Recall the Laplacian L of the comparison graph. By virtue of being the Laplacian matrix of a graph with non-
negative edges, L is symmetric and positive-semidefinite. By the singular value decomposition, we can write
L = U

T⇤U where U 2 Rd⇥d is an orthonormal matrix, and ⇤ is a diagonal matrix of nonnegative eigenvalues.
We will let L

† denote the Moore-Penrose pseudoinverse of L. The Moore-Penrose pseudoinverse is given by
L

† = U

T⇤†
U , where ⇤† is a diagonal matrix with entries

⇤†
jj

=

(

(⇤�1

jj

) if ⇤
jj

> 0

0 otherwise.

The all ones vector lies in the nullspace of L, and we will assume without loss of genenerality that the last row
of U is proportional to the all ones vector, and that ⇤

dd

= ⇤�1

dd

= 0.

A.1 Auxiliary results for upper bounds

All of our upper bounds make use of a general result for bounding the error of an M -estimator, which we
introduce here. Recall that Theorem 1 involves the minimax risk defined in the seminorm kvk

L

=
p

v

T

Lv. It is
also convenient to introduce the seminorm kuk

L

† =
p

u

T

L

†
u, where L

† is the Moore-Penrose pseudoinverse of L.

For future reference, we state and prove a lemma showing that these two seminorms satisfy a restricted form of
the Cauchy-Schwarz inequality:

Lemma 3. Any two vectors u and v such that u ? nullspace(L) or/and v ? nullspace(L) must satisfy

|hu, vi|  kuk
L

† kvk
L

. (7)

Proof. Since L = U

T⇤U and L

† = U

T⇤†
U , we have

p
v

T

Lv

p
u

T

L

†
u =

p
v

T

U⇤U

T

v

p
u

T

U⇤†
U

T

u = kevk
2

keuk
2

� |hev, eui|,

where we have defined ev : =
p
⇤U

T

v and eu : =
p
⇤†

U

T

u. Continuing on,

hev, eui = v

T

U

p
⇤
p
⇤†

U

T

u = v

T

UU

T

u,

where we have used the fact that u or/and v are orthogonal to the null space of L. Since U is orthonormal, we
conclude that hev, eui = hv, ui, which completes the proof.

We now are equipped to state and prove a general lemma on M -estimators. Given a loss function ` : Rd ! R,
consider the M -estimator

bw 2 arg min
w2W

`(w), where W is a subset of W̄ : = {w 2 Rd | h1, wi = 0}. (8)

We assume that ` is di↵erentiable and strongly convex at w

⇤ with respect to the seminorm k · k
L

, meaning that
there is some constant � > 0 such that

`(w⇤ + �) � `(w⇤) � hr`(w⇤), �i � �k�k2

L

(9)

for all perturbations � 2 Rd such that (w⇤ + �) 2 W.
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Lemma 4 (Upper bound for M -estimators). For any di↵erentiable loss function satisfying the �-strong convexity

condition (9) and any vector w

⇤ 2 W, we have

k bw � w

⇤k
L

 1

�

kr`(w⇤)k
L

† , (10)

where kuk
L

† =
p

u

T

L

†
u is the seminorm defined by the Moore-Penrose pseudoinverse of L.

Proof. Since bw and w

⇤ are optimal and feasible, respectively, for the original optimization problem, we have
`( bw)  `(w⇤). Defining the error vector � = bw�w

⇤, adding and subtracting the quantity hr`(w⇤), �i yields the
bound

`(w⇤ + �) � `(w⇤) � hr`(w⇤), �i  �hr`(w⇤), �i.

By the �-convexity condition, the left-hand side is lower bounded by �k�k2

L

. As for the right-hand side, note
that � satisfies the constraint h1, �i = 0, and thus is orthogonal to the nullspace of the Laplacian matrix L.
Therefore, by Lemma 3, we have |hr`(w⇤), �i|  kr`(w⇤)k

L

† k�k
L

. Combining the pieces yields the claimed
inequality (10).

A.2 Auxiliary results for lower bounds

Our lower bounds make use of a technical lemma, standard in minimax analysis. Suppose that our goal is to
bound the minimax risk of estimating a parameter w over an indexed class of distributions P = {P

w

| ✓ 2 ⌦} in
the square of a seminorm ⇢. Consider a collection of vectors {w

1

, . . . , w

M } contained within ⌦ such that, for all
distinct pairs of indices j, k 2 [M ],

⇢

�

w

j

, w

k

�

� � and D(P
w

j k P
w

k )  �. (11)

We refer to any such subset as an (�,�)-packing set.

Lemma 5 (Pairwise Fano minimax lower bound). Suppose that we can construct a (�,�)-packing with cardinality

M . Then the minimax error is lower bounded as

M
n

�

✓(P); ⇢2

�

� �

2

2

�

1 � � + log 2

log M

�

. (12)

Note that the relevant seminorm for Theorem 1 is given by ⇢(w1

, w

2) = kw

1 � w

2k
L

. The following lemma will
be employed to construct packings for the subsequent proofs.

Define the integer

M(↵) : =

�

exp
n

d

2

�

log 2 + 2↵ log 2↵ + (1 � 2↵) log(1 � 2↵)
�

o

⌫

. (13)

Lemma 6. For any pair � > 0 and ↵ 2 (0,

1

4

), there exists a set of M(↵) vectors of length d such that

↵�

2  kw

j � w

kk2

L

 �

2

for all j 6= k 2 [M(↵)].,

and

h1, w

ji = 0 for all j 2 [M(↵)].

Proof: The Gilbert-Varshamov bound guarantees the existence of a binary code {z

1

, . . . , z

N } in dimension (d�1),
minimum Hamming distance d↵de, and the number of code words N at least

N � 2d�1

Pd↵de�1

`=0

�

d�1

`

�

.
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Since d � 2 and ↵ 2 (0,

1

4

), we have

d↵de � 1

d � 1
 2↵  1

2
.

Applying standard bounds on the tail of the binomial distribution gives

1

2d�1

d↵de�1

X

`=0

✓

d � 1

`

◆

 exp
⇣

� (d � 1)D
KL

(
d↵de � 1

d � 1
k1

2
)
⌘

 exp
⇣

� (d � 1)D
KL

(2↵k1

2
)
⌘

,

and hence N � M(↵).

Defining the d-length vectors ew

j =



z

j

0

�

, this construction ensures that

↵d  k ewj � ew

kk2

2

 d for all distinct j, k 2 [M(↵)].

Our desired packing {w

1

, . . . , w

M(↵)} is then given by the vectors w

j : = �p
d

U

T

p
⇤†

ew

j for each j 2 [M(↵)]. Given

this definition, we have

h1, w

ji =
�p
d

1T

U

T

p
⇤†

ew = 0,

since the all-ones vector lies in the nullspace of the matrix L

† = U

T⇤†
U . On the other hand, for any pair of

distinct vectors in this set, we have

(wj � w

k)T

L(wj � w

k) =
�

2

d

( ewj � ew

k)T

p
⇤†

ULU

T

p
⇤†( ewj � ew

k)

=
�

2

d

( ewj � ew

k)T

p
⇤†⇤

p
⇤†( ewj � ew

k)

=
�

2

d

k ewj � ew

kk2

2

,

where the last step makes use of the fact that the last coordinate of each vector ew

j and ew

k is zero. It follows
that ↵�

2  kw

j � w

kk2

L

 �

2, which completes the proof.

A.3 Proof of part (a): Paired linear model

We now turn to the proof of Theorem 1(a) on the minimax rate for the paired linear model (Paired Linear).

A.3.1 Upper bound

The maximum likelihood estimate in the paired linear model is a special case of the general M -estimator (8) with

`(w) : = 1

2n

P

n

i=1

�

y

i

� hx
i

, wi
�

2

. For this quadratic objective function, it is easy to verify that the �-convexity
condition holds with � = 1. In particular, note that the Hessian of ` is given by L = X

T

X/n.

It remains to upper bound kr`(w⇤)k
L

† . The paired-linear observation model (Paired Linear) can be written
in a vectorized form as y = Xw

⇤ + ", and hence r`(w⇤) = X

T

"/n. Consequently, we have

kr`(w⇤)k2

L

† =
1

n

2

"

T

XL

†
X

T

".

Observe that " has independent zero-mean components, and each component i 2 [n] has its second moment
bounded as E["2

i

] = �

2. Since L = 1

n

X

T

X, we have

E[
1

n

"

T

XL

†
X

T

"] = �

2tr(XL

†
X

T ) = �

2(d � 1).

Applying Lemma 4 gives the desired result

E[k�k2

L

]  �

2

d � 1

n

.
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A.3.2 Lower bound

Based on the pairwise Fano lower bound stated earlier in Lemma 5, we need to construct a suitable (�,�)-packing,
where the seminorm ⇢(wj

, w

k) = kw

j � w

kk
L

is defined by the Laplacian. Given the additive Gaussian noise
observation model, we have

D(P
w

j k P
w

k ) =
n

2�2

kw

j � w

kk2

L

, (14)

With the packing from Lemma 6, Lemma 5 guarantees that

M
n

(✓(P); k · k2

L

) � ↵�

2

2

n

1 �
n�

2

2�

2

+ log 2

log M(↵)

o

.

Choosing �

2 = 0.01�2

d

n

and setting ↵ = 0.01 proves the claim for d > 9.

For the case of d  9, consider the packing set comprising the three d-length vectors w

1 = [ �p
2

� �p
2

0 · · · 0]T ,

w

2 = �w

1 and w

3 = [0 · · · 0]T , for some � > 0. From the calculations made for the general case above, we

have min
j,k

kw

j � w

kk2

L

� �

2 and max
j,k

D

KL

(P
w

jkP
w

k )  2n�

2

�

2

. Choosing �

2 = �

2

log 2

4n

and applying Lemma 5
proves the claim.

A.4 Proof of part (b): Thurstone

We now turn to the proof of Theorem 1(b) of the minimax rate for the Thurstone model (Thurstone).

A.4.1 Upper bound

Let � and � denote respectively the CDF and PDF of the standard Gaussian N(0, 1) distribution. For the
Thurstone model, the rescaled negative log likelihood takes the form

`(w) = � 1

n

n

X

i=1

n

I[y
i

= 1] log�
� hx

i

, wi
�

�

+ I[y
i

= �1] log
⇣

1 � �
� hx

i

, wi
�

�

⌘o

.

and the MLE is obtained by constrained minimization over the set

W
B

: =
�

w 2 Rd | h1, wi = 0, and kwk1  B

 

. (15)

Our first auxiliary result shows that the loss function ` is lower bounded by a quadratic form determined by the
design matrix X 2 Rn⇥d whose i

th row is given by x

T

i

.

Lemma 7. For all pairs v, w 2 W
B

, we have

v

Tr2

`(w)v � c

1

�

2

kXvk2

2

where c

1

= 4

⇡

� 1.

Proof. The Hessian can be written as

r2

`(w) =
1

n�

2

n

X

i=1

⇥

I[y
i

= 1]T
i1

+ I[y
i

= �1]T
i2

⇤

x

i

x

T

i

,

where

T

i1

: =
�(wT

x

i

/�)2 � �(wT

x

i

/�)�0(wT

x

i

/�)

�(wT

x

i

/�)2

, and

T

i2

: =
�(wT

x

i

/�)2 + (1 � �(wT

x

i

/�))�0(wT

x

i

/�)

(1 � �(wT

x

i

/�))2

.

The scalars {T

i1

, T

i2

}n

i=1

are always non-negative (since � is log-concave), and hence maximum likelihood is a
convex optimization problem. In fact, we will show now that the scalars {T

i1

, T

i2

}n

i=1

are all lower bounded by
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c

1

:= 4

⇡

� 1. Supposing this lower bound is true, the quantity of interest v

Tr2

`(w)v is bounded as

v

Tr2

`(w)v = v

T

1

n�

2

n

X

i=1

⇥

I[y
i

= 1]T
i1

+ I[y
i

= �1]T
i2

⇤

x

i

x

T

i

v

=
1

n�

2

n

X

i=1

⇥

I[y
i

= 1]T
i1

+ I[y
i

= �1]T
i2

⇤

hvT

, x

i

i2

� 1

n�

2

n

X

i=1

c

1

hvT

, x

i

i2

= n

c

1

�

2

kvk2

L

.

We will now complete the proof of this lemma by proving the claimed lower bounds on {T

i1

, T

i2

}n

i=1

. Let us begin
with T

i2

for some i 2 [n]. Since kwk1  B and since x

i

is a di↵erence vector, we have

T

i2

� inf
t2[�2B/�,2B/�]

�(t)2 + (1 � �(t))�0(t)

(1 � �(t))2

= inf
t2[�2B/�,2B/�]

�

�(t)

1 � �(t)

�

2 � t

�(t)

1 � �(t)
.

Applying standard bounds on the Gaussian distribution and making some algebraic manipulations gives

T

i2

�
�

t +
q

t

2 + 8

⇡

2

�

2 � t

�

t +
p

t

2 + 4

2

�

=
2

⇡

� t

2

�

p

t

2 + 4 �
r

t

2 +
8

⇡

�

=
2

⇡

� t

2

(t2 + 4) � (t2 + 8

⇡

)
p

t

2 + 4 +
q

t

2 + 8

⇡

=
2

⇡

�
�

2 � 4

⇡

�

t

p
t

2 + 4 +
q

t

2 + 8

⇡

� 4

⇡

� 1.

For any i 2 [n], making use of the fact that �(�t) = 1 � �(t) and �(�t) = �(t), we have

T

i1

� inf
t2[�2B/�,2B/�]

�(t)2 � �(t)�0(t)

�(t)2

= inf
t2[�2B/�,2B/�]

�(t)2 + (1 � �(t))�0(t)

(1 � �(t))2

� 4

⇡

� 1.

Here the final inequality results from the arguments made above for the case of T

i2

.

Defining the di↵erence vector � : = bw � w

⇤, Lemma 7 guarantees that

`(w⇤ + �) � `(w⇤) � hr`(w⇤), �i � c

1

�

2

k�k2

L

.

Applying Lemma 4 gives

k�k
L

 �

2

c

1

kr`(w⇤)k
L

† . (16)
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It remains to upper bound the quantity r`(w⇤)T

L

†r`(w⇤). Observe that the gradient takes the form

r`(w⇤) =
�1

n�

n

X

i=1

⇥

I[y
i

= 1]
�(hw⇤

, x

i

i/�)

�(hw⇤
, x

i

i/�)
� I[y

i

= �1]
�(hw⇤

, x

i

i/�)

1 � �(hw⇤
, x

i

i/�)

⇤

x

i

.

Define a random vector ✓ 2 Rn with independent components as

✓

i

=

(

�(hw⇤
, x

i

i/�)

�(hw⇤
, x

i

i/�)

w.p. �(hw⇤
, x

i

i/�)
��(hw⇤

, x

i

i/�)

1��(hw⇤
, x

i

i/�)

w.p. 1 � �(hw⇤
, x

i

i/�).
(17)

With this notation, we have r`(w⇤) = �1

n�

X

T

✓, and hence

r`(w⇤)T

L

†r`(w⇤) =
1

n

2

�

2

✓

T

XL

†
X

T

✓.

Observe that the absolute value of every component of the random vector ✓ is upper bounded by

sup
w2W

B

�(wT

x

i

/�)

�(wT

x

i

/�)(1 � �(wT

x

i

/�))
 1p

2⇡�(2B/�)(1 � �(2B/�))
=

1p
2⇡

.

Furthermore, since each coordinate of ✓ is independent and of mean zero, for any positive-semidefinite matrix M

it must be that

E[✓T

M✓]  1

2⇡2

tr(M).

Recall that L = 1

n

X

T

X and tr( 1

n

XL

†
X

T ) = d � 1. Consequently,

E[
1

n

2

�

2

✓

T

XL

†
X

T

✓]  1

2⇡2

d � 1

n�

2

.

Substituting this inequality in (16) gives the desired result:

E[k�k2

L

]  �

2

2⇡c

2

1



2

d � 1

n

.

A.4.2 Lower bound

As before, we let � and � denote respectively the CDF and PDF of the standard Gaussian distribution. For any
pair of weight vectors w

j and w

k, the KL divergence between the distributions P
w

j and P
w

k is given by

D

KL

(P
w

jkP
w

k ) =
n

X

i=1

�(hwj

, x

i

i/�) log
�(hwj

, x

i

i/�)

�(hwk

, x

i

i/�)
+ (1 � �(hwj

, x

i

i/�)) log
1 � �(hwj

, x

i

i/�)

1 � �(hwk

, x

i

i/�)
.

Observe that for any c > 0, it must be that log c  c � 1. It follows that for any a, b 2 (0, 1), log a

b

 a

b

� 1 and
hence a log a

b

 (a � b) a

b

. Applying this argument gives

D

KL

(P
w

jkP
w

k ) 
n

X

i=1

(�(hwj

, x

i

i/�) � �(hwk

, x

i

i/�))
�(hwj

, x

i

i/�)

�(hwk

, x

i

i/�)

�
n

�(hwj

, x

i

i/�)) � �(hwk

, x

i

i/�)
o 1 � �(hwj

, x

i

i/�)

1 � �(hwk

, x

i

i/�)


n

X

i=1

(�(hwj

, x

i

i/�) � �(hwk

, x

i

i/�))2

�(hwk

, x

i

i/�)(1 � �(hwk

, x

i

i/�))
.
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Since kwk1  B, we have

D

KL

(P
w

jkP
w

k ) 
n

X

i=1

(�(hwj

, x

i

i/�) � �(hwk

, x

i

i/�))2

�(2B/�)(1 � �(2B/�))


n

X

i=1

�(0)2

�(2B/�)(1 � �(2B/�))
(hwj

, x

i

i/� � hwk

, x

i

i/�)2

=
n

2⇡�2�(2B/�)(1 � �(2B/�))
(wj � w

k)T

L(wj � w

k).

Lemma 6 guarantees the existence of a packing set {w

1

, . . . , w

M(↵)} such that h1, w

ji = 0 for all j 2 [M(↵)], and
moreover such that

↵�

2  kw

j � w

kk2

L

 �

2 for all distinct pairs j, k 2 [M(↵)].

In order to apply this packing, we need to verify that each vector w

j also satisfies the boundedness constraint
kw

jk1  B. We claim that this boundedness condition holds when

�

2 = 0.01
�

2

d

n

⇥ 2⇡�(2B/�)(1 � �(2B/�)) (18)

From the proof of Lemma 6, we have w

j = �p
d

U

T

p
⇤†

ew

j , where ew

j has all its entries in {�1, 0, 1}. Consequently,

kw

jk1  �p
d

k
p
⇤†

ew

jk
2

(i)

 �p
d

q

tr(⇤†)
(ii)

=
�p
d

q

tr(L†)

(iii)

 B

where inequality (i) follows from the fact that ew

j has entries in {�1, 0, 1}; equality (ii) follows since L

† = U

T⇤†
U

by definition; and inequality (iii) follows from our choice (18) of � and our assumption n � c�

2

tr(L

†
)

B

2

on the
sample size with c = .01. Finally, observe that

max
j,k

D

KL

(P
w

jkP
w

k )  n�

2

2⇡�2�(2B/�)(1 � �(2B/�))
, and min

j,k

kw

j � w

kk2

L

� ↵�

2

.

We have thus constructed a packing suitable for application of Lemma 5, and doing so yields the lower bound

k bw � w

⇤k2

L

� ↵

2
�

2

n

1 �
�

2

n

2⇡�

2

�(2B/�)(1��(2B/�))

+ log 2

log M(↵)

o

.

Substituting our choice (18) of � and setting ↵ = 0.01 proves the claim for d > 9.

For the case of d  9, consider the packing set comprising the three d-length vectors w

1 = [ �p
2

� �p
2

0 · · · 0]T ,

w

2 = �w

1 and w

3 = [0 · · · 0]T , for some � > 0. From the calculations made for the general case above, we

have min
j,k

kw

j � w

kk2

L

� �

2 and max
j,k

D

KL

(P
w

jkP
w

k )  4n�

2

2⇡�

2

. Choosing �

2 = �

2

2n

and applying Lemma 5
proves the claim.

A.5 Proof of part (c): BTL model

We now turn to the proof of Theorem 1(c) on the minimax rate for the BTL model (BTL).

A.5.1 Upper bound

In this case, the maximum likelihood estimate is given by bw 2 arg min
w2W

B

`(w), where

`(w) =
1

n

n

X

i=1

log
�

1 + exp
��y

i

hw, x

i

i
�

��

.
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This loss function has gradient and Hessian, respectively, given by

r`(w) =
1

n�

n

X

i=1

�y

i

e

�y

i

hw, x

i

i
�

1 + e

�y

i

hw, x

i

i
�

x

i

, and r2

`(w) =
1

n

2

�

2

n

X

i=1

e

�y

i

hw, x

i

i
�

�

1 + e

�y

i

hw, x

i

i
�

�

2

x

i

x

T

i

.

By inspection, the Hessian is positive semi-definite, showing that ` is convex. Moreover, a simple calculation shows

that any observation y

i

2 {�1, 1} and any di↵erencing vector x

i

, we have inf
w2W

B

e

�y

i

hw, x

i

i
�

�

1+e

�y

i

hw, x

i

i
�

�

2

� 1

�

e

B

�

+e

� B

�

�

2

.

Thus, defining the di↵erence vector � : = bw � w

⇤, we find that

`(w⇤ +�) � `(w⇤) � hr`(w⇤), �i � �Tr2

`(w⇤)� � 1

�

2

�

e

B

� + e

�B

�

�

2

�T

L�.

Applying Lemma 4 gives

k�k
L

 �

2

�

e

B

� + e

�B

�

�

2kr`(w⇤)k
L

† . (19)

Now define a random vector ✓ 2 Rn with independent components

✓

i

=

8

>

>

<

>

>

:

�e

hw

⇤
, x

i

i
�

1+e

hw

⇤
, x

i

i
�

with probability 1

1+e

hw

⇤
, x

i

i
�

e

�hw

⇤
, x

i

i
�

1+e

�hw

⇤
, x

i

i
�

with probability 1

1+e

�hw

⇤
, x

i

i
�

With this notation, we have r`(w⇤) = � 1

n�

X

T

✓, and hence

r`(w⇤)T

L

†r`(w⇤) =
1

n

2

�

2

✓

T

XL

†
X

T

✓.

Observe that the absolute value of every component of the random vector ✓ is upper bounded by 1. Furthermore,
since each coordinate of ✓ is independent and of mean zero, for any positive-semidefinite matrix M it must be
that

E[✓T

M✓]  tr(M).

Recall that L = 1

n

X

T

X and tr( 1

n

XL

†
X

T ) = d � 1. Consequently,

E[
1

n

2

�

2

✓

T

XL

†
X

T

✓]  d � 1

n�

2

.

Substituting this inequality in (19) gives

E[k�k2

L

]  �

2

�

e

B

� + e

�B

�

�

4

d � 1

n

.

Setting e

B

� + e

�B

�  2e

B

� proves the claim.

A.5.2 Lower bound

Consider the function

 (w, x) = log
�

exp
�

w

a(x)

�

�

+ exp
�

w

b(x)

�

��

�
w

a(x)

+ w

b(x)

2�
,

where a(x) and b(x) denote the indices of the 1 and �1, respectively, in the di↵erencing vector x.

Given a single observation pair (y, x) from the BTL model, the associated likelihood can be written as

P[y; w, x] = exp
�

y

2�
hw, xi � (w, x)

�

.
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The Kullback-Leibler divergence between a pair P
w

j and P
w

k is given by

D(P
w

j k P
w

k ) =
1

2�

1 � e

(w

j

)

T

x

�

1 + e

(w

j

)

T

x

�

hwj � w

k

, xi � hwj � w

k

, r (wj

, x)i +
1

2
(wj � w

k)Tr2 ( ew, x)(wj � w

k).

for some ew on the line joining w

j and w

k. A straightforward computation yields

r (wj

, x) =
1

2�

1 � e

(w

j

)

T

x

�

1 + e

(w

j

)

T

x

�

x, and r2 ( ew, x) =
1

2�2

1

e

( ew)

T

x

� + e

�( ew)

T

x

� + 2
xx

T  1

8�2

xx

T

,

from which it follows that

D(P
w

j k P
w

k )  1

8�2

(wj � w

k)T

xx

T (wj � w

k).

Aggregating over all samples, and observing that the distribution of the observation is independent across samples,
we get

D(P
w

j (y) k P
w

k (y))  n

8�2

(wj � w

k)T

L(wj � w

k).

Lemma 6 guarantees the existence of a packing set {w

1

, . . . , w

M(↵)} such that h1, w

ji = 0 for all j 2 [M(↵)], and
moreover such that

↵�

2  kw

j � w

kk2

L

 �

2 for all distinct pairs j, k 2 [M(↵)].

In order to apply this packing, we need to verify that each vector w

j also satisfies the boundedness constraint
kw

jk1  B. We claim that this boundedness condition holds when

�

2 = 0.08
�

2

d

n

(20)

From the proof of Lemma 6, we have w

j = �p
d

U

T

p
⇤†

ew

j , where ew

j has all its entries in {�1, 0, 1}. Consequently,

kwk1  �p
d

k
p
⇤†

ew

jk
2

(i)

 �p
d

q

tr(⇤†)
(ii)

=
�p
d

q

tr(L†)

(iii)

 B

where inequality (i) follows from the fact that ew

j has entries in {�1, 0, 1}; equality (ii) follows since L

† = U

T⇤†
U

by definition; and inequality (iii) follows from our choice (20) of � and our assumption n � c�

2

tr(L

†
)

B

2

on the
sample size with c = 0.01.

Finally, observe that

max
j,k

D

KL

(P
w

jkP
w

k )  n�

2

8�2

, and min
j,k

kw

j � w

kk2

L

� ↵�

2

.

We have thus constructed a packing suitable for application of Lemma 5, and doing so yields the lower bound

k bw � w

⇤k2

L

� ↵

2
�

2

n

1 �
n�

2

8�

2

+ log 2

log M(↵)

o

.

Substituting our choice (20) of � and setting ↵ = 0.01 proves the claim for d > 9.

For the case of d  9, consider the packing set comprising the three d-length vectors w

1 = [ �p
2

� �p
2

0 · · · 0]T ,

w

2 = �w

1 and w

3 = [0 · · · 0]T , for some � > 0. From the calculations made for the general case above, we

have min
j,k

kw

j � w

kk2

L

� �

2 and max
j,k

D

KL

(P
w

jkP
w

k )  n�

2

2�

2

. Choosing �

2 = �

2

log 2

n

and applying Lemma 5
proves the claim.
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B Proof of Theorem 2

In the cardinal case, when each coordinate is measured the same number of times, the Cardinal model reduces
to the well-studied normal location model, for which the MLE is known to be the minimax estimator and its risk
is straightforward to characterize (see Lehmann and Casella [LC98] for instance).

In the ordinal case, the result follows from Theorem 1b, with L = 2

d(d�1)

�

dI � 11T

�

. Since h1, w

⇤i = h1, bwi = 0,

we have kw

⇤� bwk2

L

�

max

(L)

 kw

⇤ � bwk2

2

 kw

⇤� bwk2

L

�

2

(L)

. For our choice of L, we have �

2

(L) = �

max

(L) = 2

d�1

. Substituting
this relation in Theorem 1b gives the desired result.

C Materials and Methods for Experiments

We describe additional details of the experiments discussed in Section 6.

C.1 Simulations using Synthetic Data

Every data point in the plots using synthetic data is an average over 20 trial runs. In each run, the vector
w

⇤ 2 Rd is constructed by first drawing an d-length vector from the distribution N(0, I) and shifting it to satisfy
hw⇤

, 1i = 0. In the simulations of Section 6.1.1 evaluating the e↵ects of graph topology, each of the n samples
are obtained in the following manner. Given the graph topology, an edge is selected uniformly at random, and
the chosen edge determines the pair of items compared. The outcome of the comparison is generated as per
the Thurstone model. The value of � is fixed to be 1. In the simulations of Section 6.3 evaluating the e↵ects
of model misspecification, each of the n samples are obtained as follows. The pair to be compared is chosen
uniformly at random from the set of all

�

d

2

�

pairs (i.e., samples from a complete topology). The outcome of this
comparison is generated as per the Thurstone model with a probability (1� ✏) and as per the BTL model with
a probability ✏. The value of � is fixed to be 1 here as well. Given the n samples, inference is performed via the
maximum likelihood estimator for the Thurstone model, under the knowledge of the true �.

C.2 Experiments on Amazon Mechanical Turk (MTurk)

Amazon Mechanical Turk (mturk.com), or MTurk in short, is an online “crowdsourcing” platform where indi-
viduals or businesses can put up a task, and any individual can log in and complete the tasks in exchange for a
payment that is specified along with the task.

Each set of MTurk experiments described in Section 6 is a subset of the following set of seven experiments. The
tasks were selected to have broad coverage of several important subjective judgment paradigms such as preference
elicitation, knowledge elicitation, audio and visual perception and skill utilization.

(a) Rating taglines for a product: A product was described and taglines for this product were shown (Figure 6a).
The worker had to rate each of these taglines in terms of its originality, clarity and relevance to this product.

(b) Estimating areas of circles: In each question, the worker was shown a circle in a bounding box (Figure 6b),
and the worker was required to identify the fraction of the box’s area that the circle occupied.

(c) Finding spelling mistakes in text: The worker had to identify the number of words that were misspelled in
each paragraph shown (Figure 6c).

(d) Estimating age of people from photographs: The worker was shown photographs of people (Figure 6d) and
was asked to estimate their ages.

(e) Estimating distances between pairs of cities: Pairs of cities were listed (Figure 6e) and for each pair, the
worker had to estimate the distance between them.

(f) Identifying sounds: The worker was presented with audio clips, each of which was the sound of a single key
on a piano (which corresponds to a single frequency). The worker had to estimate the frequency of the sound
in each audio clip (Figure 6f).

(g) Rating relevance of the results of a search query: Results for the query ‘Internet’ for an image search were
shown (Figure 1) and the worker had to rate the relevance of these results with respect to the given query.
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Figure 6. Screenshots of the tasks presented to the subjects. For each task, only one version (cardinal or ordinal)

is shown here.

Here are some additional details about the experiments. Each experiment comprised of 100 tasks, all comprising
the same set of questions but organized in either a cardinal or ordinal format at random. A worker were o↵ered
20 cents per completed task. A worker was allowed to do no more than one task in an experiment. Workers
were required to answer all the questions in a task. Only those workers who had 100 or more approved works
prior to this and also had at least 95% approval rate were allowed. Workers from any country were allowed to
participate, except for the task of estimating distances between cities (for which only USA-based workers were
permitted since all questions involved American cities).

The analysis of Section 6.2.1 was performed in the following manner. Upon obtaining the data, we first reduced
the cardinal data obtained from the experiments into ordinal form by comparing answers given by the subjects
to consecutive questions. For five of the experiments ((b) through (f)), we had access to the “ground truth”
solutions, using which we computed the fraction of answers that were incorrect in the ordinal and the cardinal-
converted-to-ordinal data (any tie in the latter case was counted as half an error). For the two remaining
experiments ((a) and (g)) for which there is no ground truth, we computed the ‘error’ as the fraction of (ordinal
or cardinal-converted-to-ordinal) answers provided by the subjects that disagreed with each other.

The results of Figure 4a establishes the absence of a ‘data processing inequality’ between data converted from
cardinal elicitations to ordinal and data obtained by directly eliciting ordinal information. This absence of data-
processing inequality may be explained by the argument that the inherent evaluation process in the human
subjects is not the same in the cardinal and ordinal cases: humans do not perform an ordinal evaluation by
first performing cardinal evaluations and then comparing them (this is why it is frequently found to be easier to
compare than score [Bar03,SBC05]).

The analysis presented in Section 6.2.2 and Section 6.1.2 was performed as follows. For the ordinal data, we
evaluated the performance of the maximum likelihood estimators of the Thurstone model, and for the cardinal
data we evaluated the performance of the Cardinal model. Note that the cardinal data was not converted
to ordinal form in these two sections. The true and inferred vectors were first scaled to have their maximum
elements equal to 1 and minimum elements equal to �1; this mimics the e↵ect of knowing the scaling B from
‘domain knowledge’. The (scaled) inferred vectors in either case were then compared with the (scaled) true vector
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