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Abstract

The focus of this article is clustering objects by
crowdsourcing pairwise comparison tasks. We
propose graph clustering as an inference tool
for this task. We interpret the Stochastic Block
Model, which is a popular generative model for
graph clustering in this context and make connec-
tions to the Dawid-Skene Model that is widely
used in inference for crowdsourced tasks.

Looking at models and algorithms in graph clus-
tering from the point of view of inference from
crowdsourced comparison tasks gives rise to sev-
eral interesting questions. If we are clustering
n objects, making all

(
n
2

)
comparisons is too

expensive. Instead we want to cluster the ob-
jects with only a subset of pairwise compar-
isons. These comparisons when performed by
non-experts gives rise to noisy answers. One way
to overcome the noise is to make multiple queries
for same the comparison. However, the budget
and time puts a constraint on the number of ques-
tions we can ask. It is interesting to investigate
whether one is better off collecting a larger num-
ber of noisy answers compared to fewer but more
reliable answers.

Another interesting question that arises is
whether we need complicated models to get high
accuracy in clustering by pairwise comparisons?
From experiments on real data and simulations,
we observe that Stochastic Block Model though
simplistic in its approach towards crowdsourc-
ing, performs well in clustering data using pair-
wise comparisons.

This is a part of workshops in ICML 2015 Copyright 2015 by the
author(s).

1. Introduction
Supervised learning tasks need labeled data sets for train-
ing and testing. Creating such a dataset by having ex-
perts on the respective field label the collected data is both
time consuming and expensive. In (Raykar et al., 2010;
Sorokin & Forsyth, 2008; Vijayanarasimhan & Grauman,
2014; Von Ahn et al., 2008; Welinder et al., 2010) it is
shown that crowdsourcing can be a good source to collect
labels for data. Apart from generating labeled data, cluster-
ing objects from crowdsourced pairwise comparisons has
also been used as a tool to learn similarity mapping (Yi
et al., 2012).

Consider the specific example of labeling a set of images of
dogs of different breeds. One could show a set of images to
each worker on a crowdsourcing platform, and ask him/her
to identify the breed of dog in each of those images. But
such a task would require the workers to be experts in iden-
tifying the dog breeds. A more reasonable task is to ask
the workers to compare pairs of images, and for each pair,
answer whether they think the dogs in the images are of the
same breed or not. Then we can cluster images based on
the aggregate responses such that the images of dogs of the
same breed are in the same cluster. Given n images, there
are
(
n
2

)
distinct pairs of images, and it is hopeless to com-

pare all possible pairs. So, we need to cluster the data with
partial comparisons.

Clustering broadly refers to the process of grouping to-
gether the data points or objects that are similar to each
other (Jain et al., 1999). It is a powerful tool for pattern
recognition and is widely used in various applications like
data mining (Ester et al., 1995; Xu et al., 1999), social net-
works (Domingos & Richardson, 2001; Fortunato, 2010;
Mishra et al.), bioinformatics (Xu et al., 2002; Yang &
Lonardi, 2005) and other machine learning tasks. The type
of clustering algorithm to be used depends on the data and
the application. In a wide variety of applications, the data
is in the form of graphs. In these scenarios, one is inter-
ested in identifying group of nodes in the graph that are
more connected to each other than to the nodes outside the
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group.

In this article, we look at graph clustering as an infer-
ence tool for clustering images from crowdsourced pair-
wise comparison tasks. We focus on the image labeling
task experiment from our paper (Vinayak et al., 2014b) in
this light. We interpret the Stochastic Block Model in the
context of inference in Crowdsourcing (Section 2). Also
we compare the clustering results from k-means, Spectral
Clustering with the output from these clustering algorithm
with preprocessed input (where convex algorithms are used
for preprocessing the data) (Section 4).

In (Gomes et al., 2011) Bayesian estimation is used to in-
fer clusters from pairwise comparisons. Non-expert work-
ers are modeled as linear classifiers and the algorithm es-
timates the clusters as well as the linear estimators. How-
ever such models are complicated with large number of hy-
perparameters to be tuned. Furthermore, the exact model
would depend on the type of objects being compared. Un-
like such complicated models, the Stochastic Block Model
is very simple in its approach: applying graph cluster-
ing algorithms like spectral clustering and convex algo-
rithms based on low-rank + sparse decomposition on the
pairwise comparison graph does not require the knowl-
edge of model parameters and does not depend on the
type of objects being compared. From our experiments
(Section 4) we observe that clustering algorithms like k-
means and spectral clustering when combined with prepro-
cessing by convex programs (Section 3.3), perform very
well. In the future, we want to compare inference from
complex Bayesian models, maximum likelihood estimation
from popular crowdsourcing models with graph clustering
algorithms.

2. Comparing Models for Clustering and
Inference in Crowdsourcing

2.1. Dawid-Skene Model

Dawid-Skene model (Dawid & Skene, 1979) is one of
the most popular models for answers collected on crowd-
sourced tasks. Consider a task with the binary answer like
the pair-wise comparison task. In this model, each worker
j is capable of answering any given question correctly with
probability µj . This model does not account for the diffi-
culty of the question itself.

2.2. Two-coin Dawid-Skene Model

In the two-coin Dawid-Skene Model, the ability of the
worker to give correct answer depends on the true answer.
For a binary 0/1 classification task, each worker j is asso-

ciated with a 2× 2 confusion matrix,

C̃j =

[
µj,0 1− µj,0

1− µj,1 µj,1

]
(2.1)

where µj,0 is the probability that worker j correctly an-
swers the question when the true answer is 0, and µj,1 is
the probability that he/she answers correctly when the true
answer is 1.

2.3. Stochastic Block Model

Stochastic Block Model (SBM) (Condon & Karp, 2001;
Holland et al., 1983) is one of the most widely used model
for graph clustering. It is an extension of random graphs.
In a random graph on n nodes, any two nodes are linked
independently with probability p. Consider a graph on n
nodes andK clusters. Any two nodes in this graph are con-
nected with probability pi if both the nodes are in cluster i,
else they are connected with probability q. Let A = AT

be the adjacency matrix of a graph on n nodes with K
disjoint clusters of size ni each, i = 1, 2, · · · ,K. Let
1 ≥ pi ≥ 0, i = 1, · · · ,K and 1 ≥ q ≥ 0. For l > m,
Al,m = 1 with probability pi if both l and m are in the
same cluster i, and Al,m = 1 with probability q if l and m
are in different clusters. If pi > q for each i = 1, · · · ,K,
then we expect the density of edges to be higher inside the
clusters compared to outside.

2.4. Stochastic Block Model for Inference in
Crowdsourcing

For the problem of clustering images by pairwise compar-
isons, we can look at the data aggregate data collected as
a partially filled adjacency matrix. In this scenario, we can
use Stochastic Block Model as generative model. SBM can
be more specific in terms of distinguishing the classes when
the true answer is 1. The answer given by a worker depends
not only on if the true answer is 1 or 0, but when the true
answer is 1 what class the images belong to. That is:

• If the true answer is 0, then µj,0 = q for all workers j.

• If the true answer is 1, and the images being compared
are from class i, then µj,1 = pi for all workers j.

So when pi > q, it means that workers are more likely to
identify similar images and dissimilar images correctly.

Stochastic Block Model with a common edge probability p
for all clusters as applied to this would give same confusion
matrix to all workers:

C̃j =

[
1− q q
1− p p

]
(2.2)

The Stochastic Block Model is more general than the
two-coin Dawid-Skene model with respect to distinguish-
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ing questions, but is restrictive in terms of distinguishing
worker abilities as it assumes all workers have same abil-
ity.

Definition 2.1 (Partial Observation Model for SBM)
Let A = AT be the adjacency matrix of a random graph
generated according to the Stochastic Block Model. Let
0 < r ≤ 1. Each entry of the adjacency matrix A is
observed independently with probability r. Let Aobs

denote the observed adjacency matrix. Then for l > m: If
both nodes l and m are in the same cluster i,

Aobs
l,m =


1 w.p. rpi,
0 w.p. r(1− pi),
∗ w.p. 1− r.

(2.3)

If the nodes l and m are not in the same cluster i,

Aobs
l,m =


1 w.p. rq
0 w.p. r(1− q)
∗ w.p. 1− r,

(2.4)

where ∗ denotes unknown.

3. Clusteirng
3.1. k-means Clusteirng

Algorithm 1 K-Means Algorithm
Input: Data points: {x1, . . . ,xn} Number of clusters: K
Output: Cluster allocations: {y1, . . . , yn}
Initialize cluster centers {c(0)1 , . . . , c

(0)
K } randomly from

data points
t = 1
repeat

/* Cluster Allocation */
for i = 1, . . . , n do

yi = argmin
j

||xi − c
(t−1)
j ||

end
/* Update Cluster Centers */
for j = 1, . . . ,K do

c
(t)
j = 1

|{i:yi=j}|
∑

i:yi=j xi

end
t = t+ 1

until no change in cluster allocation;

K-means it one of the most popular and widely used clus-
tering algorithm. Given a set of data points in a metric
space, {x1, . . . ,xn}, k-means algorithm finds k cluster
centers which are average of the nodes in the respective
clusters. Each node in a cluster is closer to it cluster center
compared to other cluster centers. A greedy algorithm to
do this is Algorithm 1

3.2. Spectral Clustering

Algorithm 2 Spectral Clustering (Ng et al., 2001)
Input: Adjacency Matrix: A Number of clusters: K
Output: Cluster allocations: {y1, . . . , yn}

1 Compute the modified Laplacian L
2 Compute Top K eigenvectors U = [u1, . . . ,uK ] of L
3 Normalize U such that row norm = 1
4 Run K-means Algorithm on the rows of normalized U as
data and K as number of clusters to be found

Spectral clustering is another popular clustering algorithm.
Given adjacency matrix of a graph, define modified graph
Laplacian as follows,

L = D−
1
2AD−

1
2 , (3.1)

where D is a diagonal matrix with Dii =
∑n

j=1 Aij . Spec-
tral Clustering uses the top-k eigenvectors of L to cluster
the nodes in the graph. There are various versions of spec-
tral clustering algorithm. We use Algorithm 2 from (Ng
et al., 2001).

3.3. Convex Algorithms

In this section we review convex algorithms for cluster-
ing based on low-rank plus sparse decomposition of the
adjacency matrix. In the case of unweighted graphs, an
ideal clustered graph is a union of disjoint cliques. Given
the adjacency matrix of an unweighted graph with clusters
(denser connectivity inside the clusters compared to out-
side), we can interpret it as an ideal clustered graph with
missing edges inside the clusters and erroneous edges in
between clusters. Recovering the low-rank matrix corre-
sponding to the disjoint cliques is equivalent to finding the
clusters.

The idea of using convex optimization for clustering has
been proposed in (Ailon et al., 2013; Ames, 2013; Ames &
Vavasis, 2011; 2014; Chen et al., 2012; 2013; Jalali et al.,
2011; Oymak & Hassibi, 2011; Vinayak et al., 2014a;b;
Xu et al., 2010). While each of these works differ in cer-
tain ways, the common approach they use for clustering
is inspired by recent work on low-rank matrix recovery
and completion via regularized nuclear norm (trace norm)
minimization (Candes & Recht, 2009; Candes & Romberg,
2006; Candès et al., 2011; Chandrasekaran et al., 2011;
2012).

Consider the following convex program for regularized nu-
clear norm minimization (based on robust PCA):
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Simple Convex Program: (Vinayak et al., 2014b)

minimize
L,S

‖L‖? + λ‖S‖1 (3.2)

subject to
1 ≥ Li,j ≥ 0 for all i, j ∈ {1, 2, . . . n}
Lobs + Sobs = Aobs

where λ ≥ 0 is the regularization parameter, ‖.‖? is the
nuclear norm (sum of the singular values of the matrix), and
‖.‖1 is the l1-norm (sum of absolute values of the entries of
the matrix). S is the sparse error matrix that accounts for
the missing edges inside the clusters and erroneous edges
outside the clusters on the observed entries. Lobs and Sobs

denote entries of L and S that correspond to the observed
part of the adjacency matrix.

Program 3.2 is very simple and intuitive. Further, it does
not require any information other than the observed part of
the adjacency matrix.

It is not difficult to see that, when the edge probability in-
side the cluster is p < 1/2, that (as n → ∞) Program 3.2
will return L0 = 0 as the optimal solution (since if the
cluster is not dense enough it is more costly to complete
the missing edges). To overcome this hiccup, consider the
following modification:

Improved Convex Program: (Vinayak et al., 2014b)

minimize
L,S

‖L‖? + λ‖S‖1 (3.3)

subject to
1 ≥ Li,j ≥ Si,j ≥ 0 for all i, j ∈ {1, 2, . . . n}
Li,j = Si,j whenever Aobs

i,j = 0

sum(L) ≥ |R|

As before, L is the low-rank matrix corresponding to the
ideal cluster structure and λ ≥ 0 is the regularization pa-
rameter. However, S is now the sparse error matrix that
accounts only for the missing edges inside the clusters on
the observed part of adjacency matrix.

As before, L is the low-rank matrix corresponding to the
ideal cluster structure and λ ≥ 0 is the regularization pa-
rameter. However, S is now the sparse error matrix that
accounts only for the missing edges inside the clusters on
the observed part of adjacency matrix.

If R is not known, it is possible to solve Problem 3.3 for
several values of R until the desired performance is ob-
tained. Our empirical results reported in Section 4.1, sug-
gest that the solution is not very sensitive to the choice of
R.

Table 1. Empirical Parameters from the real data. (Section 4.1)
Params Value Params Value
n 473 r 0.1500
K 3 q 0.1929
n1 172 p1 0.7587
n2 151 p2 0.6444
n3 150 p3 0.7687

4. Experiments
4.1. Clustering Images: Amazon MTurk Experiment

Let us revisit our example of clustering dogs of different
breeds from introduction. Here we are interested in cre-
ating a clustered dataset that can be used for training su-
pervised models. Instead of requiring an expert to label
images, we will put a simpler task of comparing pairs of
images on crowdsourcing platform and get a partial com-
parison graph from non-experts. Our goal is to recover the
underlying clustering of the images from this noisy and in-
complete comparison graph.

Image Data Set: We used images of 3 different breeds
of dogs : Norfolk Terrier (172 images), Toy Poodle (151
images) and Bouvier des Flandres (150 images) from the
Standford Dogs Dataset (Khosla et al., 2011). We uploaded
all the 473 images of dogs on an image hosting server (we
used imgur.com). A sample of the images is in Figure 3.

MTurk Task: We used Amazon Mechanical Turk
(Buhrmester et al., 2011) as the platform for crowdsourc-
ing. For each worker who accepted the task, we showed
30 pairs of images chosen randomly from the

(
n
2

)
possible

pairs. The task assigned to the worker was to compare each
pair of images, and answer whether they think the dogs be-
long to the same breed or not. If the worker’s response is
a “yes”, then there we fill the entry of the adjacency matrix
corresponding to the pair as 1, and 0 if the answer is a “no”.

Collected Data: We recorded around 608 responses. We
were able to fill 16, 750 out of 111, 628 entries in A. That
is, we observed 15% of the total number of entries. Com-
pared with true answers (which we know a priori), the
answers given by the workers had around 23.53% errors
(3941 out of 16750). The empirical parameters for the
Stochastic Block Model with partial observations from data
obtained is shown Table 1.

We ran Program 3.3 with regularization parameter, λ =
1/
√
n and the size of the cluster region, R = 0.125

(
n
2

)
.

We did not notice much difference in the solution when
we variedR. As long as it is not too small or too large, the
program performs reasonably well. Figure 1a shows the re-
covered matrix. Entries with value 1 are depicted by white
and 0 is depicted by black. In Figure 1b we compare the
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(b) Comparing k-means and spectral clustering.

Figure 1. (a) Result of using Program 3.3 on the real data set. (b) Comparing the clustering output of running k-means and spectral
clustering directly on A (with unknown entries set to 0) and on the rounded output of Program 3.3 (Section 4.1).
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A Improved

Figure 2. Plot of sorted eigen values for (1) Adjacency matrix with unknown entries filled by 0, (2) Recovered adjacency matrix from
Program 3.3

clusters output by running the k-means and spectral clus-
tering algorithms directly on the adjacency matrix A (with
unknown entries set to 0) to that obtained by running them
on the rounded matrix recovered after running Program 3.3.
The overall error with k-means was 40.8% whereas the er-
ror drops to 7.19% we used the matrix recovered from Pro-
grams 3.3. Spectral Clustering performs even better with
error of 3.38% when run on rounded output of Program 3.3
(see Table 2). Further, note that for running the k-means
and spectral clustering algorithms we need to know the ex-
act number of clusters. A common heuristic is to identify
the top K eigen values that are much larger than the rest.
In Figure 2 we plot the sorted Eigen values for the adja-
cency matrix A and the recovered matrx. For the matrix
recovered after running Program 3.3, we can see that the
top 3 eigen values are very easily distinguished from the

rest which fall flat much more drastically compared to A.

From the empirical parameters computed on the collected
data (Table 1), we observe that on average workers found
it difficult to cluster the toy poodles as one class compared
to the other breeds. A sample of the data is shown in Fig-
ure 3. Norfolk Terrier and Bouvier des Flandres seem to
have similar colors, whereas the Toy Poodle could be of
different colors. Note that factors such as color, grooming,
posture, face visibility etc. can result in confusion while
comparing image pairs. Also, note that the ability of the
workers to distinguish the dog breeds is neither guaranteed
nor uniform. Thus, the edge probability inside and outside
clusters are not uniform. Nonetheless, k-means and spec-
tral clustering on the rounded output of Program 3.3, are
quite successful in clustering the data with only 15% ob-
servations.
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Norfolk Terrier Toy Poodle Bouvier des Flandres 

Figure 3. Sample images of three breeds of dogs that were used in the MTurk experiment. (Section 4.1)

Table 2. Number of miss-classified images for the real data. (Section 4.1)
Clusters→ #1 #2 #3 Total Success %
K-means on A 39 150 4 193 59.20
K-means on output of 3.3 1 29 4 34 92.81
Spectral Clustering on A 1 11 7 19 95.98
Spectral Clustering on output of 3.3 1 10 5 16 96.62

4.2. Simulations

For all the simulations we generate adjacency matrix
from according to the Partially Observed Stochastic Block
Model defined in Definition 2.1.

4.2.1. DIFFERENT CLUSTER SIZES

Consider a graph on n = 1000 nodes, with 4 clusters of
sizes [150, 200, 300, 350]. Edge probability inside clusters
is p = 0.7, edge probability between clusters is q = 0.3 and
observation probability is r = 0.15. We run k-means and
spectral clustering directly on the observed adjacency ma-
trix by setting unknown entries to zero, and on the output
of the Improved Convex algorithm. The average number
of misclassified images (average over 10 experiments) are
shown in the Table 3. We observe that the smallest clus-
ter is the hardest to recover (Figure 5). Note that both K-
means and spectral clustering need to know the number of
clusters. A heuristic to pick K is to look at the top eigen
values of the adjacency matrix. If the graph has K clus-
ters, the top K eigen values are separated from the rest. As
clusters get smaller, the gap between K-th and K + 1-th
eigen value decreases and hence it becomes hard to distin-
guish it. Even though running spectral clustering on the
observed adjacency matrix directly does fairly well, we in-
put number of clusters as 4. If we look at the eigen value
plot in Figure 4, we see that only top 3 eigen values are
distinguishable from the rest. So, without the prior knowl-
edge that the number of clusters is 4, spectral clustering on
the observed matrix directly would have merged the small
cluster with one of the remaining clusters giving 3 clusters.
However, if we look at the eigen values of the rounded out-
put of the improved convex program, the 4-th largest eigen
values is clearly resolved from the rest. Thus, there is an

advantage in preprocessing the data.

4.2.2. DIFFERENT EDGE DENSITIES

Recall that in the Stochastic Block Model the answer for a
pair-wise comparison depends only on the cluster to which
the images belong. However in reality it is affected by the
difficulty of the images themselves. For example, some
images might be blurry making it hard for any worker to
answer well regardless of which cluster the images belong
to. In order to check how robust clustering algorithms are
in such case, we consider the following simulation. Con-
sider a grpah on n = 1000 nodes with 4 clusters of equal
size 250. Observation probability is r = 0.15. Edge prob-
ability inside the clusters is iid N (p, σ2) with p = 0.55.
Edge probability between the clusters is iidN (q, σ2), with
q = 0.30. Standard deviation σ = 0.25. Hence even if two
images being compared are from the same class, the edge
probability can vary. Further note that p and q are just one
standard deviation apart. Table 4 shows the average num-
ber of misclassified images (average over 10 experiments).
We see that clustering algorithms, especially k-means and
Spectral clustering on the rounded output of 3.3 performs
very well with 98.61% and 98.55% success respectively.

4.2.3. COMPARISON OF MAJORITY VOTE VERSUS
NOISY OBSERVATIONS

The answers obtained by crowdsourcing are noisy as the
workers are non-experts. This noise can be reduced by tak-
ing multiple independent measurements for each compari-
son and taking the majority vote. However, this improve-
ment in quality of answers comes the cost of increase in
the number of queries. If we have a budget of M queries,
we can obtain M noisy pair-wise comparison or obtain
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Figure 4. Plot of sorted eigen values of (1) the adjacency matrix with unobserved entries set to zero and that of (2) rounded output of
improved convex program. Synthetic graph on n = 1000 nodes with 4 different clusters of sizes [150, 200, 300, 350] with p = 0.7,
q = 0.3 and r = 0.15 (Section 4.2.1).

Table 3. Average number (over 10 experiments) of miss-classified images for simulation on 1000 node graph with 4 clusters of different
sizes (Section 4.2.1).

Clusters→ #1 #2 #3 #4 Total Success %
K-means on A 76.20 8.80 39.90 24.60 149.50 85.05
K-means on output of 3.3 7.9 21.1 5.0 3.50 37.50 96.25
Spectral Clustering on A 9.20 12.50 16.20 15.90 53.80 94.62
Spectral Clustering on output of 3.3 8.10 6.80 5.20 5.90 26.00 97.40

bM/T c pair-wise comparisons that are of better quality by
making T independent repetitions.

In this experiment we want to compare fewer but less noisy
measurements versus more measurements which are noisy.
Consider a graph on n = 1000 nodes with K = 4 clus-
ters of equal sizes. Observation probability r = 0.18. So
we can ask 18% of the possible

(
1000
2

)
edges comparison

questions. Edge probability inside clusters is p = 0.7 and
between clusters is q = 0.3. We compare the clustering
results for the following two cases: (a) Different pairs are
compared in each query; (b) Each query is made 3 times
and a majority vote is taken. Table 5 shows the average
(over 10 experiments) number of misclassified images. For
the given set of parameters, the simulations suggest that
making more measurements that are noisy is better than
fewer measurements that are of better quality. In the future
work, we would like to investigate this for different set of
parameters to understand the trade-off both through simu-
lations and analysis.

5. Conclusion
In this article, we considered the problem of clustering
objects from crowd-sourced pairwise comparisons. We

looked at the generative model for clustering and the clus-
tering algorithms from the point of view of inference from
crowdsourced pairwise comparisons. Experiments on the
real data set and synthetic data sets show that clustering
algorithms can be quite effective for this task. In the fu-
ture, we would like to compare clustering algorithms and
Bayesian inference algorithms.
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Xu, Xiaowei, Jäger, Jochen, and Kriegel, Hans-Peter. A fast par-
allel clustering algorithm for large spatial databases. Data Min.
Knowl. Discov., 3(3):263–290, September 1999. ISSN 1384-
5810.

Xu, Ying, Olman, Victor, and Xu, Dong. Clustering gene ex-
pression data using a graph-theoretic approach: an application
of minimum spanning trees. Bioinformatics, 18(4):536–545,
2002.

Yang, Qiaofeng and Lonardi, Stefano. A parallel algorithm for
clustering protein-protein interaction networks. In CSB Work-
shops, pp. 174–177. IEEE Computer Society, 2005. ISBN 0-
7695-2442-7.

Yi, Jinfeng, Jin, Rong, Jain, Anil K., Jain, Shaili, and Yang, Tian-
bao. Semi-crowdsourced clustering: Generalizing crowd label-
ing by robust distance metric learning. In Advances in Neural
Information Processing Systems 25: 26th Annual Conference
on Neural Information Processing Systems 2012, Lake Tahoe,
Nevada, United States., pp. 1781–1789, 2012.


