
CrowdControl: An online learning approach for optimal task
scheduling in a dynamic crowd platform

Vaibhav Rajan vaibhav.rajan@xerox.com
Sakyajit Bhattacharya sakyajit.bhattacharya@xerox.com
L. Elisa Celis elisa.celis@xerox.com
Deepthi Chander deepthi.chander@xerox.com
Koustuv Dasgupta koustuv.dasgupta@xerox.com
Saraschandra Karanam saraschandra.karanam@xerox.com

Xerox Research Centre India, Bangalore, India

Abstract

The dynamic nature of crowd platforms poses
an interesting problem for users who wish
to schedule a large set of tasks on a given
platform. Although crowd platforms vary
in their performance characteristics, certain
temporal patterns can be discerned and sta-
tistically modeled. Methods that can learn
these patterns and adapt as the patterns
change can schedule “the right number of
tasks with the right price at the right time”
which can have significant implication on how
well the tasks are completed. To address
the problem, we propose CrowdControl : a
novel online approach that controls and co–
ordinates the execution of crowd tasks, in
real–time, involving simultaneous learning of
crowd performance and optimization based
on the learning. We design and compare sev-
eral algorithms in this framework. We also
describe dynamic statistical models of crowd
performance based on real data and a sim-
ulation testbed for evaluating CrowdControl
algorithms. Our experiments show that al-
gorithms that schedule jobs by adaptively
learning current crowd performance can sig-
nificantly outperform other algorithms that
do not learn or rely on past data alone.

ICML Workshop: Machine Learning Meets Crowdsourcing,
Atlanta, Georgia, USA, 2013.

1. Introduction

The dynamic nature of crowd platforms poses a very
interesting problem for requesters who want to sched-
ule a (large) set of tasks in a given platform. Unlike an
organizational environment, where workers have tim-
ings, known skill sets and performance indicators that
can be monitored and controlled, most crowd plat-
forms leverage the capabilities of “fleeting” workers
who exhibit dynamically changing work patterns, ex-
pertise, and quality of work (Ipeirotis, 2010). Fur-
ther, there is little or no control a platform can ex-
ert over the worker population. In such an uncon-
trolled environment, platforms exhibit wide variance
in terms of the observed performance characteristics
such as completion time, accuracy, and task comple-
tion rates. In (Dasgupta et al., 2013; Karanam et al.,
2013), the authors conduct experiments with digitiza-
tion tasks (extracting handwritten fields from a form)
crowdsourced to a platform1 and measure the varia-
tions in performance characteristics. Figure 1 shows
the hourly trends in mean accuracy and completion
time, averaged over several days. While the variance
of the entire data set is large, the variance we observe
at a specific time of day is small.

In addition to hourly (or daily) variations, factors such
as payments and size–complexity–redundancy of tasks
are also shown to affect the performance obtained from
a platform. The results strongly suggest that assign-
ing “the right number of tasks with the right price at
the right time” has significant implications on how well
the tasks are completed. Poor decision making, espe-
cially by enterprises, can lead to Service Level Agree-
ment (SLA) violations such as larger completion times,
increased costs and/or inferior accuracy. This obser-

1Name undisclosed to protect privacy

CrowdControl: Online task scheduling on crowd platforms

Figure 1. Hourly completion time (above) and accuracy
(below) distributions on a real crowd platform averaged
over a week

vation provides the motivation for the optimal task
scheduling problem described in this paper.

1.1. Towards optimal task scheduling in
dynamic crowd platforms

Users who have a large batch of tasks (to be crowd-
sourced) would like to have performance guarantees
in terms of cost, completion time and accuracy. The
scheduling problem in this case is to control and co–
ordinate the execution of the tasks with the aim of
optimizing the performance criteria.

A one–shot assignment of the entire batch cannot learn
and dynamically explore different parameter settings
to improve performance at different points of execu-
tion of the batch - for example, by offering more pay-
ments, relaxing time constraints, or tightening accu-
racy requirements. Another approach, illustrated in
(Dasgupta et al., 2013) uses historical data to recom-
mend the day and time which is most likely to fulfil
the performance requirements of the user for the in-
put batch of tasks. However, any predictions based

on past data alone may or may not hold in runtime
- the observed variations in real–time data (e.g., fig-
ure 1) indicate that performance could be significantly
different over longer periods of time.

To address the problem, we propose CrowdControl
- a novel online learning approach that controls and
co–ordinates the execution of crowd tasks, in real–
time, to meet user requirements. Task scheduling in
CrowdControl progresses in rounds - where in each
round a smaller subset of tasks is submitted to the
crowd with a stipulated set of requirements (e.g., on
cost/time/accuracy). Observations made in a previ-
ous round are used to refine the parameter settings for
the next round such that requirements are further op-
timized. Note that the composition of the workers are
bound to change at different points of time (rounds)
and so do the responses received at different instances.
The key to the proposed method thus involves simulta-
neous learning of crowd performance and optimization
based on the learning.

1.2. Performance data and models

Performance in a crowd platform has been the subject
of numerous previous studies (see section 1.4). How-
ever, almost all of prior art assumes complete control,
knowledge of the workers’ availabilities and abilities
and/or knowledge of the internal architecture of the
platforms. Clearly, such knowledge is not available to
a requestor when working with third party platforms.
Even when there is historical data with a platform
owner, it might have little or no correlation with cur-
rent operating conditions.

In contrast to previous models, our models (of the
data as well as those intrinsic to CrowdControl) are
based on only externally observable characteristics
(EOCs) of the platform, i.e., properties that can be col-
lected/measured from the platform when a task is sub-
mitted. Examples of such EOCs include task accuracy,
completion time, cost, date and time when the task
was completed. An obvious advantage of this approach
is its generality - these parameters can be easily ob-
served and recorded for any platform without requiring
any details about the internal architecture of the plat-
form. Previously, EOC–based models have been suc-
cessfully used (Dasgupta et al., 2013) to design a classi-
fication based approach for platform recommendation.
The more complex situation of adaptively switching
between platforms based on observed performance has
been studied in (Celis et al., 2013). Note that, while
we introduced and utilized EOC–based models in our
previous work none of them addresses the problem of
optimal task scheduling on crowd platforms.

CrowdControl: Online task scheduling on crowd platforms

In this paper, we also present new EOC–based perfor-
mance models of accuracy and completion time of real
crowd tasks submitted over one week to a crowd plat-
form. We extend these models in numerous ways to
generate simulations of crowd performance over several
weeks. This enables us to evaluate CrowdControl al-
gorithms under various controllable experimental con-
ditions.

1.3. Summary of our contributions

• A framework for scheduling tasks on a crowd
platform in real–time that leverages the dynamic
performance characteristics of the crowd. We
design and evaluate of novel algorithms, in the
framework, that simultaneously learn crowd per-
formance and schedule tasks effectively.

• Dynamic statistical models of crowd performance
based on real data and a simulation testbed for
evaluating algorithms.

1.4. Related Work

Karger et al. discuss a general model of crowdsourcing
tasks and design an algorithm for task assignment to
workers and for inferring correct responses which out-
performs simple majority voting (Karger et al., 2011).
The aim is to minimize the budget and achieve a level
of reliability characterized in terms of worker reliabil-
ities. Tran–Thanh et al. also address the problem
of assigning tasks to a set of workers with varying
working costs (Tran-Thanh et al., 2012). They take
into account the utility of each task to a worker, the
quality of a worker and the limits on the number of
tasks a worker performs – finally tasks are assigned
to maximize overall utility. Minder et al. and Khaz-
ankin et al. also provide combinatorial optimization
frameworks for the offline task allocation problem un-
der price/QoS constraints (Minder et al., 2012; Khaz-
ankin et al., 2012). In the online version of the prob-
lem, workers arrive in an online manner and must be
assigned to a task. The goal is to allocate tasks to
workers and optimize the benefit of the requester. Ho
and Vaughan extend the solution of the online ad-
words problem to solve this problem (Ho & Vaughan,
2012). Faridani et al. use a survival analysis model to
find the right price for each worker assigned to a task
(Faridani et al., 2011). None of these solutions ad-
dress the problem of scheduling tasks in the presence
of rapidly changing characteristics of the underlying
platform. Further, none of these solutions work when
there is little or no knowledge of the internals of the
platforms.

2. The Crowd Control Scheduler

Based on the role each parameter assumes in schedul-
ing, we classify the EOC parameters into three cat-
egories: Response, Adjustable and Limit parameters.
These three sets of parameters are not mutually ex-
clusive. Response parameters are parameters that the
user wants to optimize. These include accuracy, com-
pletion time and cost. Note that the values of these
parameters depend, directly or indirectly, on the task,
the time and the composition of the crowd. They may
change from one worker to another and may also be
different for the same worker at different times. Ad-
justable parameters are those that the scheduler is al-
lowed to vary within given limits. Examples include
batch size, cost of each task, and number of judgments.
Limit parameters are those that the scheduler is not
allowed to vary; these set upper or lower limits on var-
ious parameters for the scheduler. For example, the
maximum cost or completion time of the entire batch
of tasks can serve as limit parameters.

The scheduler divides the input batch of tasks into
subsets of tasks and sends the subsets to the crowd by
varying only the adjustable parameters. The execution
of the entire batch of tasks must be completed within
the limits set by the limit parameters. It iteratively es-
timates the values of the response parameters from the
responses obtained from the crowd and schedules the
tasks in a way that optimizes the response parameters
for the input batch of tasks.

In this study we restrict ourselves to the following
parameters. Two response parameters, tested inde-
pendently: mean completion time and the mean–to–
variance ratio of the accuracy. (The algorithms are de-
scribed assuming a maximization setting; the changes
for minimization are obvious.) Batch size is the single
adjustable parameter. Total completion time is a limit
parameter, which is used to set the time limit for each
round of the scheduler. Thus in each of the algorithms
we assume an input t (timeout) that is the time limit
for each round. Such a time limit is also practically
useful. Previous studies (Wang et al., 2011; Faridani
et al., 2011) have shown that completion times have
a heavy tailed distribution: a majority of the jobs get
completed fast whereas the remaining (the tail) take
inordinately long time. Depending on the type of task,
the batch size and the platform used, the timeout pa-
rameter can be set. Although fixed in the following
algorithms, we can also vary the timeout (with the
batch size) for each round. The algorithms can be
generalized to include multiple adjustable, limit and
response parameters.

CrowdControl: Online task scheduling on crowd platforms

2.1. Scheduling Algorithms

The general template of a CrowdControl algorithm is
shown below.

Algorithm CrowdControl Scheduler

Input: Tasks T , Platform P , Objective function f ,
Historical Data H
Initialize: Completed Tasks, C = φ; Incomplete
tasks, I = T ; Timeout t
repeat

Select b tasks from I: R ⊆ I, |R| = b
Send R to platform P
At completion or after t time steps: withdraw in-
complete tasks, let Rc be the set of completed
tasks
Update: C = C ∪Rc, I = I −Rc,

until C = T

The main difference between the algorithms lies in
the way the adjustable parameter (b) is selected in
each round. The algorithms typically use an objective
function (such as mean completion time or mean–to–
variance ratio of accuracy) that is to be optimized for
the entire batch. Based on the response received (Rc)
in each round, the value of this function (f(Rc)) is
computed and the value of the adjustable parameter
(b) is determined for the next round. We now describe
these details for the algorithms we evaluate.

2.1.1. Optimistic Scheduler (OS)

The simplest possible scheduler, which forms a base-
line for our comparison with other algorithms, simply
sends a pre–decided fixed number of tasks in every
round. We call it the Optimistic Scheduler (OS).

2.1.2. Best guess scheduler (BGS)

The Best Guess Scheduler (Algorithm BGS) uses his-
torical data (performance of previously sent tasks) to
determine the distribution of batch sizes to be used
for the schedule. Let bmax denote the maximum batch
size to be sent in any round of the scheduler. Let fmax

be the maximum value of the objective function. We
call the pair (day of week, time of day) a timepoint.
The distribution is determined as follows. We sort the
timepoints of the past in descending order of the av-
erage value of the objective function seen at the time-
point. Let ft be the objective function value at time-
point t. For each timepoint in the sorted list, if the
timepoint occurs within the limits of completion time,
we assign in our schedule a batch size b = bmax

ft
fmax

(i.e., a batch size proportional to the performance seen
in the past). After iterating over the sorted list, if there

are more batches to be assigned to the schedule, then
batch sizes are allocated randomly in the schedule un-
til the entire batch is scheduled.

2.1.3. Gaussian Process Upper Confidence
Bound based Scheduler (GPS)

This scheduler is based on a Bayesian Optimization
framework which we briefly describe, following the
presentation in (Srinivas et al., 2010). The goal of
Bayesian Optimization is to sequentially optimize an
unknown function f : D 7→ R. In each round i, we
observe the function value (with noise): yi = f(xi) + ε
at a chosen point xi ∈ D. A Bayesian Optimization
solution attempts to sample the best possible xi from
the domain D at each step with the aim of optimiz-
ing ΣT

i=1f(xi) (over T rounds). For a CrowdControl
Scheduler, we model the response parameters, R, as
a function of the adjustable parameters, A. At each
round, the scheduler samples from the space of ad-
justable parameters in order to optimize the response
parameters for the entire batch.

The key ingredients of a Bayesian Optimization tech-
nique are the modeling assumptions about the un-
known function f and the sampling rule used to sample
from the domain. In the GP–UCB algorithm which we
use, f is modeled as a Gaussian Process. In a Bayesian
setting, the posterior from a GP prior is again a GP
distribution and can be computed using simple ana-
lytic formulas (see (Srinivas et al., 2010) for details).
For CrowdControl it is also possible to obtain the first
prior by training the GP using historical data. The
UCB sampling rule is as follows. Let x be the vector
(of values for the adjustable parameters) that is chosen
in each round of the algorithm. We choose xi in round
i such that xi = arg maxx∈D µi−1(x) +

√
βiσi−1(x),

where µi−1 and σi−1 are the mean and covariance func-
tions of the GP, respectively, at the end of round i− 1
and βi is a constant. Intuitively, the method sam-
ples from known regions of the GP that have high
mean (function values closer to the known maxima)
and also from unknown regions of high variance, thus
simultaneously optimizing and learning. As recom-
mended in (Srinivas et al., 2010), for finite domain D,
we set βi = 2 log |D|i2π2/6δ. In our experiments we
set δ = 0.1 and use a squared–exponential kernel in
the GP.

Algorithm GP–UCB based Scheduler (GPS)

• Select batch size from the UCB rule.
• Perform Bayesian update on µ, σ using f(Rc) in
each round

CrowdControl: Online task scheduling on crowd platforms

2.1.4. Thompson Sampling based Scheduler
(TS)

The multi–armed bandit framework (Berry & Frist-
edt, 1985) has been used in many real–world prob-
lems to model online decision making scenarios that re-
quire simultaneous exploration (acquiring knowledge)
and exploitation (optimizing). Multi–armed bandit
frameworks have also been considered in the context
of crowdsourcing (Tran-Thanh et al., 2012; Celis et al.,
2013). However, the focus has been on learning opti-
mal parameters of either individual workers or plat-
forms as opposed to our more complex problem of dy-
namically scheduling tasks.

A simple and efficient bandit algorithm is Thompson
sampling (Chapelle & Li, 2011) which is based on prob-
ability matching. The key idea of the method is to
randomly draw each arm according to its probability
of being optimal. The reward for each arm is assumed
to come from a parametric distribution and after each
round, as more knowledge is gained, the distributions
are updated in a Bayesian manner.

The CrowdControl scheduler naturally fits into this
framework where the arms are chosen from the do-
main of the adjustable parameters (the batch sizes)
and the rewards are obtained through the chosen ob-
jective function determined by the crowd response. We
model the problem as a standard K–armed Bernoulli
bandit with the mean reward of the ith arm modeled
as a Beta distribution, the conjugate of the Binomial
distribution. Each time the crowd response is better
than the previously seen objective function value, it is
counted as a success for the arm. If the crowd response
is worse than the previously seen value, it is counted
as a failure. We initialize the Beta distribution pri-
ors to α = 1, β = 1 and maintain success and failure
counters Si, Fi for each arm.

Algorithm Thompson Sampling Scheduler (TS)

• Batch size selection:
for i = 1, . . . , k do

Draw θi from Beta(Si + α, Fi + β)
end for
Select batch size (arm) b = arg maxi θi
• Update distribution parameters:
if f(Rc) > fprev then
Si = Si + 1

else if f(Rc) < fprev then
Fi = Fi + 1

end if

2.1.5. Gradient-based Scheduler (GS)

The principle of this algorithm is simple: it starts with
the minimum batch size and the minimum value of the
objective function. Each time the crowd response is
better than the function value in the previous round,
it doubles the batch size. If the crowd response is worse
than the previously seen value, it halves the batch size.

Algorithm Gradient based Scheduler (GS)

• Batch size Selection:
Initialize: b = bmin

In each round:
if f(Rc) > fprev then
b = min(2b, bmax)

else if f(Rc) < fprev then
b = max(b/2, bmin)

end if

3. Data and Models

In this section we describe the data and present statis-
tical models based on the observed performance char-
acteristics. While the models are of independent inter-
est, they also provide the foundation for a simulation
testbed which can be used as a proxy crowd for exper-
imentation. This is particularly useful since going to
the crowd directly may come at a significant cost.

Our data consists of the performance data (completion
time and accuracy) on a platform taken hourly over a
one week period. In Section 3.1 we model this data as a
longitudinal time series. Then, in Section 3.2, we add
noise and further variability in an informed manner,
based on observed correlations in the sample data, in
order to simulate the performance characteristics of a
platform into the future. The noise and time series
parameters are tunable, which allows for a wide range
of simulation models. Data simulated in this manner
is used to evaluate CrowdControl algorithms.

3.1. Performance models based on real data

The data is collected by posting batches of 50 forms
to the crowd, every hour of the day, for all days of
a week leading to 8400(= 50 × 24 × 7) observations.
A crowd worker has to digitize one or more fields (al-
phanumeric strings) in the forms. Since the true an-
swer is known to us (we only use gold data), the ac-
curacy of the response is computed easily. Task Ac-
curacy is given by 1 − L/N where L is the edit dis-
tance (minimum number of string manipulations, i.e.
insertions/deletions/substitutions, required to trans-
form one string to other) and N is the length of string.
Task completion time is measured from the time of

CrowdControl: Online task scheduling on crowd platforms

posting the task to the time when results are received.
For more details of the data collection procedure see
(Karanam et al., 2013). In our modeling, we consider
three independent variables: day of week (Monday to
Sunday), hour of day (0000 to 2300) and batch size (1
to 50). The dependent variables are task completion
time and accuracy.

Completion time is viewed as longitudinal data, start-
ing at hour 0000 on Monday, since 50 measurements
(one per task, batch of 50) are taken each hour. Allow-
ing for heterogeneity, we fit a different ARMA model
to each hour and choose the best using the Bayesian
Information criterion. The fit is sufficiently good: the
pseudo r–square value (Long, 1997) is 0.975.

As the tasks we sent were simple, the accuracy of the
responses were high: around 80% of the responses had
accuracy 1 (i.e., 100%). There is no apparent time–
series structure since the values remain mostly un-
changed over time. Since most of the accuracy values
are 1, we fit a sparse regression model. If Y is the
accuracy value, then 1−Y becomes a sparse response,
where most of the observations are zeroes. We perform
a sparse regression on the data 1 − Y with day, hour
and number of tasks as the predictor variables. The
pseudo r–square value is 0.998.

3.2. Extending performance model to
simulations

In order to evaluate CrowdControl algorithms we cre-
ate a testbed that simulates the performance of a
crowd. Using these simulations we can generate per-
formance data for several weeks (from our real data
of one week). Moreover, the simulations allow us to
study the behavior of the algorithms under carefully
controlled experimental conditions. These simulations
are generated by combining additional models over the
model described in the previous section. Although not
validated by real data, the additional models are based
on autocorrelations that are strongly suggested by the
real data.

Assuming correlations within each hour (as modeled in
the previous section) and correlations between hours
and between days, we use a simulation model gener-
ated by three (independent) time series structures:

• T1 : For each hour, Yt = φ1 (Yt−1, Yt−2, ..., Y1) for
t ∈ [1, 50].

• T2 : Yi×50 = φ2
(
Y(i−1)×50, Y(i−2)×50, Y50

)
for i ∈

[1 : 168].

• T3 : Yi×50 = φ3
(
Y(i×50−1200, Yi×50−2400, ..., Y50

)
for i ∈ [1 : 168].

Yt denotes performance (completion time/accuracy) at
time t. In the simulations, we consider the weighted
linear combination of these three structures. The
weights can be varied to get different types of simu-
lations. Within each hour (i.e., for T1), the perfor-
mance values are fitted using an ARMA(p, q) struc-
ture where the choices of p and q are obtained using
the AIC/BIC criterion. For T2 and T3, however, we
use a generalized ARMA structure for each time series
where the coefficients can be varied to get different
simulations. The model is assumed to be of the form
αT1 + βT2 + (1 − α − β)T3 where 0 ≤ α, β ≤ 1 and
α+β ≤ 1 where α and β are the weights. We also use
noise parameters to control the variance within each
model. A list of the parameters and the values used in
the simulations is shown in table 3.2. For each of the
48 models, we simulate four weeks’ data. Note that for
the real data (in the previous section), we had mod-
eled accuracy using sparse regression. However, here
we use a common time–series model for both accuracy
and completion time in the simulations since the fit,
for accuracy, using this model (T1) on the real data is
also very good: the pseudo r–square value is 0.913.

In order to get a sense of how the simulated data varies
from the original data, we show two sample simula-
tions along with the original data (repeated from figure
1) in figure 2. The weight parameters of the simula-
tions are (α = 0.2, β = 0.4, (1 − α − β) = 0.4), thus
being the ‘farthest’ from the original data since time
series T2 and T3 have higher weights than the original
model. Also note that the variance changes dramati-
cally when the noise parameters are increased from 2
to 5.

4. Experimental Results

We test the algorithms using the following pa-
rameter settings: bmax = 50, bmin = 5, A =
{5, 10, 15, . . . , 40, 45, 50}, k = |A| = 10, t = 60 min-

Parameter Values
Weights of T1 and T2 (0.33,0.33)

(α, β) (0.2,0.4)
(0.4,0.2)

ARMA structure of T2 (p1, q1) (1,0), (1,1)
ARMA structure of T3 (p2, q2) (1,0), (1,1)

Noise parameters (1,2,2)
(σ1, σ2, σ3) (1,3,3)

(1,4,4)
(1,5,5)

Table 1. Parameters of the simulation model, and the val-
ues used to generate simulations

CrowdControl: Online task scheduling on crowd platforms

Figure 2. Plot of the average completion time (above) and
accuracy (below) over 24 hours of a day: two simulations
and the original data.

utes. The (real) data collected from the crowd is used
as historical data and various simulations are used as
future data for which the algorithms create schedules
for a batch of 15000 tasks. Given the day of the week,
the time of the day and a batch size, the simulator pro-
vides the batch completion time and mean accuracy of
the batch.

We test two objective functions independently: the av-
erage completion time and the mean–to–variance ratio
of the accuracy. Note that we want to minimize the
average completion time and maximize the accuracy.
Since most of the accuracy values for our tasks (and
simulations) were high, we use the mean–to–variance
ratio (instead of mean accuracy) as the objective func-
tion. The performance of an algorithm is measured by
the value of the objective function for the entire batch
of input tasks. These values, shown in figure 4 for
different simulation settings, are averages (with stan-
dard deviation bars) over 1680 runs: 10 runs of each
scheduler executed for 24× 7 starting timepoints in a
week.

In figure 3 we show an execution of two algorithms
– GS and TS – over 100 rounds for a single simu-
lation. The bars represent the batch sizes selected

Figure 3. An execution of two algorithms – GS (above) and
TS (below) – over 100 rounds for a single simulation. The
bars represent the batch sizes selected in each round. For
better visualization we plot the negative of the completion
time with an offset of 50

in each round. For better visualization we plot the
negative of the completion time with an offset of 50:
thus, the higher the value on this curve, the better the
(simulated) performance of the crowd is. Thompson
sampling based scheduler, TS, is clearly more reactive,
adapts quickly to varying completion times and creates
a schedule with higher performance. As we see sub-
sequently, algorithm TS has the best performance in
nearly every experiment we conduct.

The first column of figure 4 (above: accuracy, below:
completion time) shows the performance of the algo-
rithms averaged over all the simulation parameters
(weights, ARMA coefficients and noise parameters).
Algorithm TS performs the best with the least mean
completion time and the highest mean–to–variance ra-
tio for accuracy. The improvement in performance,
with respect to other algorithms, is higher for comple-
tion time where the variance in the data (and simula-
tions) is higher.

The middle column of figure 4 shows the performance
of the algorithms separately for each of the three
weights in the simulations. For each algorithm there
are three bars, one for each weight setting, which rep-
resents the algorithm’s performance averaged over all
other simulation parameters (ARMA coefficients and
noise parameters). Once again, TS performs the best.

CrowdControl: Online task scheduling on crowd platforms

Figure 4. Average Performance of Algorithms: mean completion time (above), mean–to–variance ratio of accuracy (below).
Left column: averages over all simulations; Middle column: three bars, one for each weight setting, averaged over all other
simulation parameters; Right column: four bars, one for each noise setting, averaged over all other simulation parameters.

Note that the performance is better in the case where
the weights of the second and third time–series struc-
tures are higher. Thus with larger deviations from the
model, as might be expected in the real world, TS is
able to adapt faster and schedule better than other
methods.

The last column of figure 4 shows the performance of
the algorithms separately for each of the four noise
parameters in the simulations. For a single algorithm
there are four bars, one for each noise level, which rep-
resents the algorithm’s performance averaged over all
other simulation parameters (weights and ARMA coef-
ficients). While the differences in the performance are
not much when there is less noise in the data (the first
bar, parameter (1, 2, 2)), the differences become sig-
nificant with increase in noise (the last bar, parameter
(1, 5, 5)), once again showing that with more noise, TS
adapts faster and creates better schedules.

Overall, algorithms GS and GPS also perform well, GS
comparable to TS when mean–to–variance ratio of ac-
curacy is optimized and GPS comparable to TS when
mean completion time is optimized. We also com-
pute the performance of the globally optimal schedule
(OPT) The average mean–to–variance ratio of OPT is
710.22 (due to very low variance) and the average com-
pletion time is 0.39 minutes. Note that OPT, that has

complete knowledge of the performance of the crowd
in advance, is impossible in reality and can only be
computed in simulations.

5. Conclusion

In this paper we propose CrowdControl: a novel frame-
work for scheduling a batch of tasks on a crowd plat-
form which aims at simultaneously learning crowd per-
formance and optimizing the performance achieved on
an input batch of tasks. We also describe statistical
models of performance based on real data which are
extended to create a novel simulation testbed for eval-
uating our algorithms. Our experiments show that
adaptive learning algorithms can significantly outper-
form other algorithms that do not learn or rely on past
data alone. In particular, Thompson Sampling based
scheduling performed well in a wide variety of experi-
mental conditions and we recommend this approach.

In the future, we intend to validate both the models
and algorithms on more real data from the crowd. The
algorithms have been evaluated with simple parameter
settings (e.g., only batch size is varied in each round);
multiple adjustable parameters and more complex ob-
jective functions need further testing. The effects of
varying costs and task categories on the models and
algorithms is also worth exploring.

CrowdControl: Online task scheduling on crowd platforms

References

Berry, D. A. and Fristedt, B. (eds.). Bandit problems:
sequential allocation of experiments. Chapman and
Hall, 1985.

Celis, Elisa, Dasgupta, Koustuv, and Rajan, Vaibhav.
Adaptive crowdsourcing for temporal crowds. In 3rd
Temporal Web Analytics Workshop, Rio de Janeiro,
Brazil Accepted, to appear, 2013.

Chapelle, Olivier and Li, Lihong. An empirical evalu-
ation of thompson sampling. In Neural Information
Processing Systems (NIPS), 2011.

Dasgupta, Koustuv, Rajan, Vaibhav, Karanam,
Saraschandra, Balamurugan, Chitralekha, and Pi-
ratla, Nischal. Crowdutility: Know the crowd that
works for you. In Extended Abstracts, ACM SIGCHI
Conference on Human Factors in Computing Sys-
tems (CHI), 2013.

Faridani, Siamak, Hartmann, Björn, and Ipeirotis,
Panagiotis G. Whats the right price? pricing tasks
for finishing on time. In Proc. of AAAI Workshop
on Human Computation, 2011.

Ho, Chien-Ju and Vaughan, Jennifer Wortman. Online
task assignment in crowdsourcing markets. In AAAI
Conference on Artificial Intelligence, 2012.

Ipeirotis, Panos. A computer scientist in a
business school, 2010. URL http://www.

behind-the-enemy-lines.com/.

Karanam, Saraschandra, Rajan, Vaibhav, and Das-
gupta, Koustuv. Understanding dynamic perfor-
mance variability across multiple crowdsourcing
platforms. In Short Paper, ACM Web Science, Ac-
cepted, to appear, 2013.

Karger, David R, Oh, Sewoong, and Shah, Devavrat.
Iterative learning for reliable crowdsourcing sys-
tems. In Neural Information Processing Systems,
2011.

Khazankin, Roman, Schall, Daniel, and Dustdar,
Schahram. Predicting qos in scheduled crowdsourc-
ing. In Advanced Information Systems Engineering,
pp. 460–472. Springer, 2012.

Long, J. Scott. Regression Models for Categorical and
Limited Dependent Variables. Thousand Oaks: Sage
Publications, 1997.

Minder, Patrick, Seuken, Sven, Bernstein, Abra-
ham, and Zollinger, Mengia. Crowdmanager-
combinatorial allocation and pricing of crowdsourc-
ing tasks with time constraints. In Workshop on

Social Computing and User Generated Content in
conjunction with ACM Conference on Electronic
Commerce (ACM-EC 2012), Valencia, Spain (JUN
2012), pp. 1–18, 2012.

Srinivas, Niranjan, Krause, Andreas, Kakade, Sham,
and Seeger, Matthias. Gaussian process optimiza-
tion in the bandit setting: No regret and experimen-
tal design. In Proceedings of the 29th International
Conference on Machine Learning (ICML 2010), pp.
1015–1022, 2010.

Tran-Thanh, Long, Stein, Sebastian, Rogers, Alex,
and Jennings, Nicholas R. Efficient crowdsourcing
of unknown experts using multi-armed bandits. In
European Conference on Artificial Intelligence, pp.
768–773, 2012.

Wang, Jing, Faridani, Siamak, and Ipeirotis, P. Esti-
mating the completion time of crowdsourced tasks
using survival analysis models. Crowdsourcing for
search and data mining (CSDM 2011), 31, 2011.

http://www.behind-the-enemy-lines.com/
http://www.behind-the-enemy-lines.com/

