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Abstract

Community sensing, fusing information
from populations of privately-held sensors,
presents a great opportunity to create efficient
and cost-effective sensing applications. Yet,
reasonable privacy concerns often limit the
access to such data streams. How should sys-
tems valuate and negotiate access to private
information, for example in return for mone-
tary incentives? How should they optimally
choose the participants from a large popula-
tion of strategic users with privacy concerns,
and compensate them for information shared?

In this paper, we address these questions and
present a novel mechanism, SeqTGreedy,
for budgeted recruitment of participants in
community sensing. By exploiting a link be-
tween privacy tradeoffs in community sensing
and adaptive submodularity, we prove that
SeqTGreedy is budget feasible, incentive
compatible (truthful) for participants and
achieves near-optimal utility for a large class
of sensing applications. We demonstrate the
effectiveness of our approach in a case study
of air quality monitoring, using data collected
from the Mechanical Turk platform. Com-
pared to the state of the art, our approach
achieves up to 10% increase in acquired utility
(for a given budget) and up to 30% reduction
in cost (to achieve a desired level of utility).

1. Introduction

Community sensing is a new paradigm for creating
efficient and cost-effective sensing applications by
harnessing the data of large populations of sensors.
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For example, the accelerometer data from smartphone
users could be used for earthquake detection and fine
grained analysis of earthquake phenomena. Velocity
data from GPS devices (in smartphones or automo-
biles) could be used to provide real-time traffic maps.
However, accessing this stream of private sensor data
raises reasonable concerns about privacy of the indi-
vidual users. For example, mobility patterns and the
house or office locations of a user could possibly be in-
ferred from their GPS tracks (Krumm, 2007). Beyond
concerns about sharing sensitive information, there
are general anxieties among users about sharing data
from their private devices. These concerns limit the
practical applicability of deploying such applications.

Applications of community sensing are numer-
ous. Several case studies have demonstrated the prin-
cipal feasibility and usefulness of community sensing.
A number of research and commercial prototypes are
build, often relying on special studies to recruit volun-
teers (Zheng et al., 2010) or by special contracts with
service providers to get data on an anonymous basis
(Wunnava et al., 2007). The SenseWeb system (Kansal
et al., 2007) has been developed as an infrastructure
for sharing sensing data to enable various applications.
Methods have been developed to characterize traffic
(Yoon et al., 2007), perform forecasts about future traf-
fic situations (Horvitz et al., 2005) or predict a driver’s
trajectory (Krumm & Horvitz, 2006). Cell tower sig-
nals obtained from the service providers are leveraged
for travel time estimation on roadways (Wunnava et al.,
2007). Additionally, captured images and video clips
from smartphones have been used to link places with
various categories (Chon et al., 2012). Clayton et al.
(2012) describes the design of a Community Seismic
Network (CSN) to study seismic phenomena from dense
network of low cost sensors hosted by volunteers from
the community. Aberer et al. (2010) envisions a commu-
nity driven sensing infrastruture with air quality moni-
toring as application.
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Privacy concerns in community sensing are ex-
pected and reasonable (Lieb, 2007; Wunnava et al.,
2007; Olson et al., 2005). Irrespective of the models
of privacy we consider (Sweeney, 2002; Dwork, 2006;
Machanavajjhala et al., 2006), the key concern is about
identifiability as users become members of increasingly
smaller groups of people sharing the same characteris-
tics inferred from data. Beyond general anxieties about
the sharing of location and mobility data, studies have
demonstrated that, even with significant attempts at
obfuscation, home and work locations can be inferred
from GPS tracks (Krumm, 2007).

Incentives to participants for privacy tradeoff.
Olson et al. (2005) show that people’s willingness to
share information depends greatly on the type of in-
formation being shared, with whom the information is
shared, and how it is going to be used. They are will-
ing to trade off privacy if compensated in terms of their
utility gain (Krause & Horvitz, 2008). In other words,
they act as strategic agents who are willing to negoti-
ate access to certain private information in return of,
e.g., monetary or other form of incentives. Empower-
ing users to opt into such negotiations is the key idea
that we explore in this paper.

1.1. Overview of our approach

Our goal is to design policies for selecting (and compen-
sating) the participants which provide near-optimal
utility for the sensing application under strict budget
constraints. As basis for selection, the community
sensing system receives obfuscated estimates of the
private attributes – for concreteness we focus on sensor
location. The users also declare a bid or cost as
the desired monetary incentive for participation and
hence privacy tradeoff. After receiving the bids, the
mechanism sequentially selects a participant, commits
to make her the payment, receives the actual private
information, selects the next participant and so on.
At the end, all selected participants are provided
the agreed payment. We model the participants as
strategic agents who aim to maximize their profit,
by possibly misreporting their private costs. As a
consequence, we require the mechanism to be truthful.
In order to capture a large class of sensing applications,
we only require the utility function to be submodular
(Nemhauser et al., 1978; Krause & Guestrin, 2007).

To design our mechanism, we first reduce the sequential
negotiation of the privacy tradeoff to problem of adap-
tive submodular maximization (Asadpour et al., 2008;
Golovin & Krause, 2011; Guillory & Bilmes, 2010).
Then, we extend recent results of truthful budget feasi-
ble mechanisms for submodular functions (Singer, 2010;
Chen et al., 2011; Singer, 2012) to the adaptive setting.

Our main contributions are:

• An integrated approach to community sensing by
incentivizing users for sharing private information.

• A novel mechanism, SeqTGreedy, for budgeted
recruitment of strategic participants, which
achieves near-optimal utility for the community
sensing application. This mechanism is of inde-
pendent theoretical interest and also for other
applications, e.g., viral marketing.

• Evaluation of our approach on a realistic case study
of air quality monitoring based on data obtained
through Mechanical Turk (MTurk, 2005).

1.2. Related Work

Himmel et al. (2005) propose to provide users with re-
wards such as free minutes to motivate them to accept
mobile advertisements. Hui et al. (2011) develop Mo-
biAd, a system for targeted mobile advertisements, by
utilizing the rich set of information available on the
phone and suggesting the service providers to give dis-
counts to the users, in order to incentivitze use of the
system. Liu et al. (2008) propose a game theoretic
model of privacy for social networking based mobile
applications and presents a tit-for-tat mechanism by
which users take decisions about their exposed loca-
tion obfuscation for increasing personal or social util-
ity. Chorppath & Alpcan (2012) study a privacy game
in mobile commerce, where users choose the degree of
granularity at which to report their location and the
service providers offer them monetary incentives under
budget constraints. The best users’ response and the
optimal strategy for the company are derived by an-
alyzing the Nash equilibrium (NE) of the underlying
privacy game. This is very different from our setting as
we focus on algorithmic aspects in choosing the best set
of users for participation in community sensing.

2. Problem Statement

We now formalize the problem addressed in this paper.

Sensing phenomena. We focus on community sens-
ing applications with the goal to monitor some spatial
phenomenon, such as air quality or traffic. We dis-
cretize the environment as a finite set of locations V,
where each v ∈ V could, e.g., denote a zip code or more
fine grained street addresses, depending on the appli-
cation. We quantify the utility f(A) of obtaining mea-
surements from a set of locationsA using a set function
f : 2V → R. Formally, we only require that f is nonneg-
ative, monotone (i.e., whenever A ⊆ A′ ⊆ V it holds
that f(A) ≤ f(A′)) and submodular. Submodularity is
an intuitive notion of diminishing returns, stating that,
for any sets A ⊆ A′ ⊆ V, and any fixed location a /∈ A′
it holds that f(A∪{a})− f(A) ≥ f(A′ ∪{a})− f(A′).
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As a simple, concrete example, we may derive some non-
negative value da for observing each location a ∈ A,
and may define f(A) =

∑
a∈A da. These conditions are

rather general, satisfied by many sensing utility func-
tions and f can capture much more complex notions,
such as reduction of predictive uncertainty in a proba-
bilistic model (Krause & Guestrin, 2007).

Sensing profile of users. We consider a community of
N users, denoted by setW, owning some sensing device
such as a smartphone. Each user can make observations
at a set of locations depending on her geolocation or
mobility as well as the type of device used. We model
this through a collection of sensing profiles O ⊆ 2V

whereby we associate each user w ∈ W with a profile
yw ∈ O, specifying the set of locations covered by her.
We denote a given set of users S ⊆ W jointly with their
sensing profiles as yS ⊆ W×O. The goal is to select set
of users S (also called participants) so as to maximize
the utility of the sensing application given by g(yS) =
f(A) where A =

⋃
s∈S ys. We assume that each users’

maximal contribution to the utility is bounded by fmax.

Privacy profile of users. In order to protect pri-
vacy, we consider the setting where the exact sensing
profiles yw of the users (containing, e.g., tracks of lo-
cations visited) are not known to the sensing system.
Instead, yw is only shared after obfuscation with a ran-
dom perturbation intended to reduce the risk of iden-
tifiability (Sweeney, 2002; Dwork, 2006). The system’s
highly uncertain belief about the sensing profile of user
w can therefore be represented as a random variable
(also called privacy profile) Yw with yw being its real-
ization. We use YW = [Y1, . . . , YN ] to refer to the col-
lection of all (independent) variables associated with
population W and assume that YW is distributed ac-
cording to a factorial joint distribution P (YW). The
sensing profile yw is revealed to the application only af-
ter it commits to provide the desired incentives to the
user w. Adding this privacy component, the goal of the
application is to select a (random) set of users S to max-
imize EYW [g(yS)], i.e., the expected utility, where the
expectation is over realizations of YW w.r.t. P (YW).

Incentives structure for privacy tradeoff. We
assume that users are willing to share certain non-
sensitive private information in return of monetary in-
centives. Each user w has a private cost cw ∈ R≥0 that
she experiences for her privacy tradeoff. Instead of re-
vealing cw, she only reveals a bid bw ∈ R≥0. We are in-
terested in truthful mechanisms, where it is a dominant
strategy for a user to report bw = cw, i.e., users cannot
increase their profit (in expectation) by lying about their
true cost. We assume that costs have known bounded
support, i.e., cw ∈ [cmin, cmax].

Optimization problem. Given a strict budget con-
straint B, the goal of the sensing application is to design
a mechanismM, which implements an allocation policy
to select participants S and a payment scheme to make
truthful payments θs to each of the participants, with
the goal of maximizing the expected utility. Instead of
committing to a fixed set of participants S in advance
(non-adaptive policy), we are interested in mechanisms
that implement an adaptive policy taking into account
the observations made so far (revealed sensing profiles
of participants already selected) when choosing the next
user. Formally, the goal of the mechanism is to adap-
tively select participants S∗ along with the payments
θS∗ , such that

S∗ = arg max
S⊆W

EYW [g(yS)] subject to
∑
s∈S

θs ≤ B (1)

Here, the set of participants S selected and the pay-
ments θS may depend on the realization of YW as well.
We formally introduce adaptive policies in Section 4.

3. Existing Mechanisms

We first review existing mechanisms that fall short of
either privacy-preservation, adaptivity or truthfulness.
In Section 4, we then build on these and present our
main contribution: a privacy-respecting, truthful and
adaptive mechanism.

3.1. Without privacy

Consider first an unrealistic setting, where the system
has full information about the users’ exact sensing
profiles and their true costs. In such a setting, Prob-
lem 1 reduces to that of budgeted maximization of
a monotone non-negative submodular function with
non-uniform costs, studied by Sviridenko (2004). A
simple algorithm combining partial enumeration with
greedy selection guarantees a utility of at least (1− 1/e)
times that obtained by optimal selection Opt. This
result is tight under reasonable complexity assumptions
(Feige, 1998). We denote this setting and mechanism
as Greedy. Note that each participant is paid its true
cost in this untruthful setting. Now, consider the non-
private setting with unknown true costs. This problem
reduces to designing truthful budget feasible mecha-
nism for monotone submodular set functions, as studied
in (Singer, 2010; Chen et al., 2011; Singer, 2012), where
a constant factor 7.91 approximation compared to
Opt can be achieved. We use TGreedy to denote this
setting and mechanism. TGreedy executes a greedy
allocation on a reduced budget with carefully chosen
stopping criteria (for ensuring budget feasibility), in
order to select a set of participants and then computes
the truthful payments to be made to them.
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Table 1: Different information settings and mechanisms.

Untruthful Truthful

Privacy Off Greedy TGreedy

Privacy On (Non-Adaptive) ConstGreedy ConstTGreedy

Privacy On (Adaptive) SeqGreedy SeqTGreedy

3.2. Non-adaptive with privacy

In our case, where privacy is preserved through random
obfuscation, one must deal with the stochasticity
caused by the uncertainty about users’ sensing profiles.
Here, the objective

G(S) ≡ EYW [g(yS)] =
∑
yW

P (YW = yW)f

(⋃
s∈S

ys

)
in (1) can be seen as an expectation over multiple sub-
modular set functions, one for each realisation of YW .
However, as submodularity is preserved under expecta-
tions, the set functionG(S) is submodular as well. One
can therefore still apply the mechanisms Greedy and
TGreedy in order to obtain near-optimal non-adaptive
solutions (i.e., the set of participants is fixed in advance)
to Problem (1). We denote these non-adaptive (con-
stant) mechanisms applied to our privacy preserving
setting as ConstGreedy and ConstTGreedy. .

3.3. Untruthful, adaptive with privacy

Instead of non-adaptively committing to the set S of
users selected a priori, one can hope to obtain increased
utility through adaptive (sequential) selection, i.e., by
taking into account the observations from the users
selected so far when choosing the next user. Without
assumptions, computing such an optimal policy for
Problem (1) is intractable. Fortunately, as long as the
sensing quality function f is monotone and submodular
(see Section 2), Problem (1) satisfies a natural condi-
tion called adaptive submodularity (Golovin & Krause,
2011). This condition generalizes the classical notion
of submodularity to sequential decision problems as
faced here.

Adaptive submodularity requires, in our setting,
that the expected benefit of any fixed user w ∈ W
given a set of observations (i.e., set of users and ob-
served sensing profiles) can never increase as we make
more observations. Formally, consider the conditional
expected marginal gain of adding a user w ∈ W \ S to
an existing set of observations yS ⊆ W ×O:

∆g(w|yS) =EYw [g(yS ∪ {(w, yw)})− g(yS)|yS ]

=
∑
y∈O

P (Yw = y|yS) · [g(yS ∪ {(w, y)})− g(yS)]

Function g with distribution P (YW) is adaptive sub-
modular, if ∆g(w|yS) ≥ ∆g(w|yS′) for yS ⊆ yS′ .

Thus, the gain of a user w, in expectation over its un-
known sensing profile, can never increase as we select
and observe more participants.

Proposition 1. Suppose f is monotone and submod-
ular. Then the objective g and distribution P used in
Problem 1 are adaptive submodular.

Above Proposition follows from Theorem 6.1 of Golovin
& Krause (2011), assuming distribution P is factorial
(i.e., the random obfuscation is independent between
users). Given this problem structure, for the simpler,
untruthful setting (i.e., known true costs), we can thus
use the sequential greedy policy for the stochastic sub-
modular maximization studied by Golovin & Krause
(2011). This approach is denoted by SeqGreedy
and obtains a utility of at least (1 − 1/e) times that of
optimal sequential policy SeqOpt.

Table 1 summarizes the settings and mechanisms
considered so far. They all fall short of at least one
of the desired characteristics of privacy-preservation,
truthfulness or adaptivity. In next section, we present
our main contribution – SeqTGreedy, an adaptive
mechanism for the realistic setting of privacy-sensitive
and strategic agents.

4. Our main mechanism: SeqTGreedy

We now describe our mechanismM = (πM,θM), with
allocation policyπM and payment scheme θM. M first
obtains the bids BW and privacy profiles P (YW) from
all users, runs the allocation policy πM to adaptively
select participants S and makes observations yS during
selection. At the end, it computes payments θS using
scheme θM. The allocation policy πM can be thought
of as a decision tree. Formally, a policy π : 2W×O →W
is a partial mapping from observations yS made so far
to the next user w ∈ W \ S to be picked, denoted by
π(yS) = w. We seek policies that are provably compet-
itive with the optimal (intractable) sequential policy
SeqOpt. θM computes payments which are truthful in
expectation (a user cannot increase her total expected
profit by lying about her true cost, for a fixed set of bids
of other users) and individually rational (θs ≥ bs). For
budget feasibility, the allocation policy needs to ensure
that the budget B is sufficient to make the payments
θS to all selected participants. Next, we describe in
detail the allocation policy and payment scheme of
SeqTGreedy with these desirable properties.
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Policy 1 Allocation policy of SeqTGreedy

Parameters: B;W; YW ; BW ;
Outputs: participants: S = ∅; observations: yS =
∅; marginals: ∆S = ∅;
Variables: remaining users W ′ =W; set α≥1 = 2;
whileW ′ 6= ∅ do

w∗ = arg maxw∈W′
∆g(w|yS)

bw
;

∆w∗ = ∆g(w
∗|yS);

if BS + b∗w ≤ B then
if b∗w ≤ Bα ·

∆w∗(
(
∑

s∈S ∆s)+∆w∗
) then

S = S ∪ w∗; ∆S = ∆S ∪∆w∗

Observe yw∗ ; yS = yS ∪ (w∗, yw∗)
W ′ =W ′ \ w∗

else
W ′ = ∅

end if
else
W ′ =W ′ \ w∗

end if
end while
return S; yS ; ∆S ;

4.1. Allocation policy of SeqTGreedy

Policy 1 presents the allocation policy of
SeqTGreedy. The main ingredient of the pol-
icy is to greedily pick the next user that maximizes
the expected marginal gain ∆g(w|yS) per unit cost.
The policy uses additional stopping criteria to enforce
budget feasibility, similar to TGreedy (Chen et al.,
2011). Firstly, it runs on a reduced budget B/α.
Secondly, it uses a proportional share rule ensuring
that the expected marginal gain per unit cost for the
next potential participant is at least equal to or greater
than the expected utility of the new set of participants
divided by the budget. We shall prove in the Section 4.3
that α = 2 achieves the desired properties.

4.2. Payment characterization of SeqTGreedy

The payment scheme is based on the characterization
of threshold payments used by TGreedy (Singer,
2010). However, a major difficulty arises from the fact
that the computation of payments for a participant
depends also on the unallocated users, whose sensing
profiles are not known to the mechanism. Let S denote
the set of participants allocated by πM along with
making observations yS . Let us consider the set of
all possible realizations of YW = yW ⊆ W × O
consistent with yS , i.e., yS ⊆ yW . We denote this set
by ZW,S = [y1,y2 . . .yr . . .yZ ], where Z = |ZW,S |.
We first discuss how to compute the payment for each
one of these possible realizations yr ∈ ZW,S , denoted
by θds(yr) (where d indicates here an association with

the deterministic setting of knowing the exact sensing
profiles of all users w ∈ W). These payments for
specific realizations are then combined together to
compute the final payment to each participant.

Payment θds for a given yW . Consider the case where
the variables YW are in state yW ∈ ZW,S and let S
be the set of participants allocated by the policy. We
use the well-known characterization of Myerson (1981)
of truthful payments in single-parameter domains. It
states that a mechanism is truthful when 1) allocation
rule is monotone (i.e., an already allocated user cannot
be unallocated by lowering her bid, for a fixed set of bids
of others) and 2) allocated users are paid threshold pay-
ments (i.e., the highest bid they can declare before being
removed from the allocated set). Monotonicity follows
naturally from the greedy allocation policy which sorts
users based on expected marginal gain per unit cost.
To compute threshold payments, we need to consider a
maximum of all the possible bids that a user can declare
and still get allocated, as explained next.
Let us renumber the users in the order S =
{1, . . . , i, . . . , k} in which they were allocated by mecha-
nismM and let us analyze the payment for participant
s = i. Consider running the policy on an alternate
set W ′ = W \ {i} and let S ′ = {1, . . . , j, . . . , k′} be
the allocated set (users renumbered again based on or-
der of allocation when running the policy onW ′). ∆S
and ∆′

S′ are the marginal contributions of the par-
ticipants in the above two runs of the policy. We de-
fine ∆i(j) to be the marginal contribution of i (from
S) if it has to replace the position of j (in set S ′).
Now, consider the bid that i can declare to replace j in
S ′ by making a marginal contribution per cost higher

than j, given by bi(j) =
∆i(j)·bj

∆′j
. Additionally, the bid

that i can declare must satisfy the proportional share
rule, denoted by ρi(j) = B

α ·∆i(j)/
(
(
∑

s′∈[j−1] ∆′
s′ ) + ∆i(j)

)
.

By taking the minimum of these two values, we get
θdi(j) = min(bi(j), ρi(j)) as the bid that i can declare to

replace j in S ′. The threshold payment for participant
s = i is given by θdi = maxj∈[k′+1] θ

d
i(j).

Computing the final payment θs. For each yr ∈
ZW,S , compute θd,ri = θdi (yr). The final payment made
to participant s is given by θs =

∑
yr∈ZW,S

P (YW =

yr|yS) · θd,rs . Note that the set ZW,S could be expo-
nentially large, and hence computing the exact θs may
be intractable. However, one can use sampling to get
estimates of θs in polynomial time (using Hoeffding’s
inequality to bound sample complexity) and thus im-
plement an approximately truthful payment scheme to
any desired accuracy. Further, note that the approxi-
mation guarantees ofM do not require computation of
the payments at all, and only require execution of the
allocation policy, which runs in polynomial time.
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4.3. Analysis of SeqTGreedy

We now analyze the mechanism and prove its desirable
properties. The proofs of all theorems are presented
in the extended version of this paper. We only sketch
them here.

Theorem 1. SeqTGreedy is truthful in expectation,
i.e., no user can increase her profit in expectation by
lying about her true cost, for a fixed set of bids of other
users.

Firstly, truthfulness of payments θd,rs is proved for a
considered realization yr. This is done by showing the
monotonicity property of the greedy allocation policy
and proving the threshold nature of the payment θd,rs .
Truthfulness of the actual payment θs follows from
the fact that it is a linear combination of individually
truthful payments θd,rs .

Theorem 2. Payments made by SeqTGreedy are
individually rational, i.e. θs ≥ bs.

This is proved by showing a lower bound of bs on each
of the payments θd,rs used to compute the final payment
θs.

Theorem 3. For α = 2, SeqTGreedy is budget
feasible, i.e., θS ≤ B.

We first prove an upper bound on the payments made
to any participant by B · ∆s/(

∑
s∈S ∆s) by adapting the

proof from (Chen et al., 2011). Surprisingly, these
payment bounds hold irrespective of the payment
scheme used by the mechanism. Summing over these
payments ensures budget feasibility.

Theorem4. For α = 2, SeqTGreedy achieves a util-
ity within a factor of 4.75 of that obtained by the optimal
policy SeqOpt (with full knowledge of true costs), when
the utility contribution of each participant is small com-
pared to the overall utility achieved by the mechanism.

We show that, because of the diminishing returns prop-
erty of the utility function, the stopping criteria used
by the mechanism based on proportional share and
using only an α proportion of the budget still allows the
allocation of sufficiently many participants to achieve
a competitive amount of utility. We also use the fact
that in our settings, each user can only contribute a
maximal of fmax utility to the application, which, for a
large-scale application, is small compared to the utility
achieved by the mechanism under a given budget.

5. Experimental Evaluation

In this section, we carry out extensive experiments to
understand the practical performance of our mecha-
nism on a realistic community sensing case study.

Benchmarks. We compare against the following
benchmarks and state-of-the-art mechanisms.

• SeqGreedy (unrealistically) assumes access to
the true costs of the users, thus measuring the loss
incurred by SeqTGreedy for enforcing truthful-
ness and serving as upper bound benchmark on
untruthful mechanisms.

• Random allocates users randomly until the bud-
get is exhausted and pays each participant its true
cost. This represents a lower bound benchmark
on untruthful mechanisms.

• ConstTGreedy is the non-adaptive variant of
SeqTGreedy and the state-of-the-art truthful
mechanism.

• TGreedy (unrealistically) assumes access to
the exact sensing profiles of the users and hence
provides insights in measuring the loss incurred
due to privacy protection.

Metrics and experiments. The primary metric we
measure is the utility acquired by the application. We
also measure budget required to achieve a specified util-
ity. To this end, we conduct experiments by varying the
given budget and then varying the specified utility, for
a fixed obfuscation level. To further understand the
impact of random obfuscation, we then vary the level
of obfuscation and measure i) % Gain from adaptivity
(SeqTGreedy vs. ConstTGreedy), ii) % Loss from
truthfulness (SeqTGreedy vs. SeqGreedy), and iii)
% Loss from privacy (SeqTGreedy vs. TGreedy).

5.1. Experimental setup and data sets.

We now describe our setup and data collection from
Mechanical Turk (henceforth MTurk).

Community sensing application. Suppose we wish
to monitor air quality using mobile sensors (Aberer
et al., 2010). We consider a granularity level of zip
codes and locations V correspond to the zip codes of
state Nevada, USA. We obtained information related to
latitude, longitude, city and county of these zips from
publicly available data 1. This represents a total of 220
zip codes located in 98 cities and 17 counties. In order
to encourage spatial coverage, we choose our objective
f such that one unit utility is obtained for every zip
code location observed by the selected participants. To
simulate a realistic population of the N users, we also
obtained the population statistics for these zip codes 2.

MTurk study and user attributes. We posted a
Human Intelligent Task (HIT) on MTurk in form of a

1http://www.populardata.com/downloads.html
2http://mcdc2.missouri.edu/

http://www.populardata.com/downloads.html
http://mcdc2.missouri.edu/
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Figure 2: In (a) and (d), for a fixed obfuscation level of 40 miles radius, budget given and desired utility are
varied. In (b), (c), (e) and (f)) the obfuscation level is varied. (b) and (c) measure utility acquired for a given
budget of 5$ and show up to 10% adaptivity gain. (e) and (f) measure the budget required (in $) to achieve a
utility of 120 and shows up to 30% adaptivity gain.

survey, where workers were told about an option to par-
ticipate in a community sensing application. Workers
were asked to express their sensitivity (on scale of [1-
100]), as well as the payment bids (in range of [1-500]
$) they desire to receive about exposing their location
at the granularity of home address, zip, city, state or
country respectively. Additionally, workers were asked
about their daily mobility to gather data for defining the
sensing radius of the users in our experiments. A total of
650 workers participated in our HIT, restricted to work-
ers from the USA with more than 90% approval rate and
were paid a fixed amount of 0.25$ each. Fig 1(a) shows
the mean bids and expressed sensitivity for different
levels of obfuscation. Fig 1(b) shows the distribution
of bids for exposing zip level location information. A
mean daily mobility of 18 miles was reported. Fig 1(c)
shows no correlation between their daily mobility (re-

lated to user’s sensing radius and hence utility) and bids
for exposing zip information (related to user’s bid).

Parameter choices. We consider a population of size
N = 500. We used the distributions of daily mobility to
define the sensing radius of the users and distribution
of expressed zip level bids as the bids in our experi-
ments. We used cmin = 0.01 and cmax = 1 by scaling
the bids in this range. We set the maximum possible
utility obtained from each user to fmax = 15 by limiting
the maximal number of observable zip code locations of
each user to 15, which are randomly sampled from the
locations covered by the user’s sensing radius.

5.2. Results

Varying the given budget and specified utility.
For a fixed obfuscation level of 40 miles radius, Fig 2(a)
and 2(d) show the effect of varying the given budget
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and desired utility respectively. Fig 2(a) illustrates
the bounded approximation of our mechanism SeqT-
Greedy w.r.t. SeqGreedy and up to 10% improve-
ment over ConstTGreedy in terms of acquired util-
ity. In Fig 2(d), we can see that the budget required
to achieve a specified utility by our mechanism is un-
bounded w.r.t. SeqGreedy and we get up to 30% re-
duction in budget required by using the adaptive mech-
anism.

Utilityacquiredatdifferentobfuscation levels. In
Figs. 2(b) and 2(c), the acquired utility is measured for a
given budget of 5$ by varying the obfuscation level. We
can see that adaptivity helps acquire up to 10% higher
utility and this adaptivity gain increases with higher
obfuscation (more privacy). The loss from truthfulness
is bounded (by 35%), agreeing with our approximation
guarantees. The loss from the lack of private informa-
tion grows initially. However, eventually we see that
the gain from adaptivity helps to overcome the loss we
incur due to privacy protection.

Budget required at different obfuscation levels.
In Figs. 2(e) and 2(f), the required budget is computed
for a desired utility value of 120 by varying the obfusca-
tion level. We can see an increasing adaptivity gain, up
to a total of 30% reduction in required budget. As the
privacy level increases, the incurred loss from privacy
(in terms of increased budget requirement) is nearly
compensated by the adaptivity gain.

6. Conclusions

We presented a principled approach for negotiating
access to private information in community sensing.
By using insights from mechanism design and adap-
tive submodular optimization, we designed the first
adaptive, truthful and budget feasible mechanism guar-
anteed to recruit a near-optimal subset of participants
in community sensing. We demonstrated the feasibility
and efficiency of our approach in a realistic case study.
We believe that this integrated approach connecting
privacy, utility and incentives provides an important
step towards developing practical, yet theoretically
well-founded techniques for community sensing.
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