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Abstract

When dealing with subjective, noisy, or oth-
erwise nebulous features, the “wisdom of
crowds” suggests that one may benefit from
multiple judgments of the same feature on
the same object. We give theoretically-
motivated feature multi-selection algorithms
that choose, among a large set of candi-
date features, not only which features to
judge but how many times to judge each
one. We demonstrate the effectiveness of this
approach for linear regression on a crowd-
sourced learning task of predicting people’s
height and weight from photos, using features
such as gender and estimated weight as well
as culturally fraught ones such as attractive.

1. Introduction

In this paper we consider prediction with subjective,
vague, or noisy attributes (which are also termed ‘fea-
tures’ throughout this paper). Such attributes can
sometimes be useful for prediction, because they ac-
count for an important part of the signal that cannot
be otherwise captured. In a crowdsourcing setting,
the “wisdom of crowds” suggests that including multi-
ple assessments of the same feature by different people
may be useful. Henceforth, we refer to assessments of
features as judgments. This paper introduces the prob-
lem of selecting, from a set of candidate features, which
ones to use for prediction, and how many judgments
to acquire for each, for a given budget limiting the
total number of judgments. We give theoretically jus-
tified algorithms for this problem, and report crowd-
sourced experimental results, in which judgments of
highly subjective features (even culturally fraught ones
such as attractive) are helpful for prediction.

As a toy example, consider the problem of estimating
the number of jelly beans in a jar based on an image
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of the jar. A linear regressor with multiple judgments
of features might have the form,

ŷ =0.95(est. number of beans)/5 − 50(round jar)/2+

100(monochromatic)/1 + 30(beautiful)/3.

Here, for binary attributes, a/ra ∈ [0, 1] denotes the
fraction of positive judgments out of ra judgments of
attribute a. For real-valued attributes, a/ra denotes
the mean of ra judgments. The shape, number of col-
ors, and attractiveness of the jar each help correct bi-
ases in the estimated number of beans, averaged across
five people. Our goal is to choose a regressor that, as
accurately as possible, estimates the labels (i.e., jelly
bean counts) on future objects (i.e., jars) drawn from
the same distribution, while staying within a budget of
feature judgment resources per evaluated object at test
time. In the example above, notice that even though
the monochromatic coefficient is greater than the beau-
tiful coefficient, fewer monochromatic judgments are
used, because counting the number of colors is more
objective, and hence further judgments are less valu-
able. While this example is contrived, similar phenom-
ena are observed in the output of our algorithms.

We refer to the problem of selecting the number of
repetitions, ra, of each attribute, as the feature multi-
selection problem, because it generalizes the feature
selection problem of choosing a subset of features, i.e.,
ra ∈ {0, 1}, to choosing a multiset of features, i.e.,
ra ∈ N. Since the feature selection problem is well
known to be NP-hard (Natarajan, 1995), our prob-
lem is also NP-hard in the general case. (For a for-
mal reduction, one simply considers the “objective”
case where all judgments of the same feature-object
pair are identical.) Nonetheless, several successful ap-
proaches have been proposed for feature selection. The
algorithms that we propose generalize two of these ap-
proaches to the problem of feature multi-selection.

Our algorithms are theoretically motivated, and tested
on synthetic and real-world data. The real world data
are photos extracted from the publicly available Pho-
tographic Height/Weight Chart (Cockerham, 2013),
where people post pictures of themselves announcing
their own height and weight.

http://www.cockeyed.com/photos/bodies/heightweight.html
http://www.cockeyed.com/photos/bodies/heightweight.html
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As a more general motivation, consider a scientist who
would like to use crowdsourcing as an alternative to
themselves estimating a value for each of a large data
set of objects. Say the scientist gathers multiple judg-
ments of a number of binary or real-valued attributes
for each object, and uses linear regression to predict
the value of interest. In some cases, crowdsourcing
is a natural source of judgments, as a great number
of them may be acquired on demand, rapidly, and at
very low cost. We assume the scientist has access to
the following information:

• A labeled set of objects (o, y) ∈ O × Y (with
no judgments), where O is a set of objects and
Y ⊆ R is a set of ground-truth labels drawn inde-
pendently from a distribution D.

• A crowd, which is a large pool of workers.

• A possibly large set of candidate attributes A.
For any attribute a ∈ A and object o ∈ O, the
judgment of a random worker from the crowd may
be queried at a cost.

• A budget B, limiting the number of attribute
judgments to be used when evaluating the regres-
sor on a new unseen object.

Our approach is as follows:

1. Collect k ≥ 2 judgments for each candidate at-
tribute in A, for each object in the labeled set.

2. Based on this data and the budget, decide how
many judgments of each attribute to use in the
regressor.

3. Collect additional judgments (as needed) on the
labeled set so that each attribute has the number
of judgments specified in the previous step.

4. Find a linear predictor based on the average judg-
ment of each feature.1

Step 4 can be accomplished by simple least-squares re-
gression. The goal in Step 2 (feature multi-selection)
is to decide on a number of judgments per attribute
that will hopefully yield the smallest squared error af-
ter Step 4.

Interestingly, even given as few as k = 2 judgments per
attribute, one can project an estimate of the squared
error with more than k judgments of some features.
We prove that these projections are accurate, for any

1We focus on mean averaging, leaving to future work
other aggregation statistics such as the median.

fixed k ≥ 2, as the number of labeled objects increases.
Our algorithms perform a greedy strategy for feature
multi-selection, to attempt to minimize the projected
loss. This greedy strategy can be seen as a generaliza-
tion of the Forward Regression approach for standard
feature selection (see e.g. Miller, 2002). The first al-
gorithm operates under the assumption that different
attributes are uncorrelated. In this case the projec-
tion simplifies to a simple scoring rule, which incorpo-
rates attribute-label correlations as well as a natural
notion of inter-rater reliability for each attribute. In
this case, greedy selection is also provably optimal.
While attributes are highly correlated in practice, the
algorithm performs well in our experiments, possibly
because Step 4 corrects for a small number of poor
choices during feature multi-selection. The second al-
gorithm attempts to optimize the projection without
any assumptions on the nature of correlations between
features.

While crowdsourcing is one motivation, the algorithms
would be applicable to other settings such as learning
from noisy sensor inputs, where one may place multi-
ple sensors measuring each quantity, or social science
experiments, where one may have multiple research as-
sistants (rather than a crowd) judging each attribute.

The main contributions of this paper are: (a) introduc-
ing the feature multi-selection problem, (b) giving the-
oretically justified feature multi-selection algorithms,
and (c) presenting experimental results, showing that
feature multi-selection can yield more accurate regres-
sors, with different numbers of judgments for different
attributes. Proofs of results and additional experimen-
tal data are provided in Sabato & Kalai (2013).

Related Work

Related work spans a number of fields, including
Statistics, Machine Learning, Crowdsourcing, and
measurement in the social sciences. A number of
researchers have studied attribute-efficient prediction
(also called budgeted learning) assuming, as we do,
that there is a cost to evaluating attributes and one
would like to evaluate as few as possible (see, for in-
stance, the recent work by Cesa-Bianchi et al. (2011)
and references therein). In that line of work, each at-
tribute is judged at most once. The errors-in-variables
approach (e.g., Cheng & Van Ness, 1999) in statistics
estimates the ‘true’ regression coefficients using noisy
feature measurements. This approach is less suitable
in our setting, since our final goal is to predict from
noisy measurements.

A wide variety of techniques have been studied to com-
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bine estimates of experts or the crowd of a single quan-
tity of interest (see, e.g. Dawid & Skene, 1979; Smyth
et al., 1994; Welinder et al., 2010), like estimating the
number of jelly beans in a jar from a number of guesses.

Two recent works on crowdsourcing are very rele-
vant. Patterson & Hays (2012) crowdsourced the mean
of 3 judgments of each of 102 binary attributes on
over 14,000 images, yielding over 4 million judgments.
Some of their attributes are subjective, e.g., soothing.
We employ their crowdsourcing protocol to label our
binary attributes. Isola et al. (2011) study subjec-
tive and objective features for the task of estimating
how memorable an image is, by taking the mean of
10 judgments per attribute for each image. They per-
form greedy feature selection over these attributes to
find the best compact set of attributes for predicting
memorability. The key difference between their algo-
rithm and ours is that theirs does not choose how many
judgments to average. Since that quantity is fixed for
each attribute, their setting falls under the more stan-
dard feature selection umbrella. In our experiments
we compare this approach to our algorithms.

Finally, in the social sciences, a wide array of tech-
niques have been developed for assessing inter-rater
reliability of attributes, with the most popular perhaps
being the α coefficient (Cronbach, 1951). A principal
use of such measures is determining, by some thresh-
old, which features may be used in content analysis.
For an overview of reliability theory, see (Krippendorff,
2012).

2. Preliminary assumptions and
definitions

Let there be d candidate attributes called A = [d] =
{1, 2, . . . , d}. We assume that, for any object o and
attribute a, there is a distribution over judgments
P[X[a] | O = o], and we assume that the judgments
of attribute-object pairs are conditionally independent
given the sets of attributes and objects. This rep-
resents an idealized setting in which a new random
crowd worker is selected for each attribute-object judg-
ment (In our experiments, we limit the total amount of
work that any one worker may perform). We assume
a distribution D over labeled objects, where labels are
real numbers. We denote by DO the marginal dis-
tribution over objects drawn according to D. We let
P[X[a]] = PO∼DO

[X[a] | O]]. Labels y are assumed to
be real valued. As is standard, we assume one “true”
label yi for each object oi.

For notational ease, we assume that in the feature
multi-selection phase, exactly k ≥ 2 judgments for

each feature are collected. Our analysis trivially gen-
eralizes to the setting in which different attributes are
judged different numbers of times. Finally, each at-
tribute a is assumed to have an expected value of
E[X[a]] = 0, where the expectation is taken across
objects and judgments of a. This is done for ease of
presentation, so that we do not have to track the mean
vectors as well as the variance. When discussing im-
plementation details, we describe how to remove this
assumption in practice without loss of generality.

Vectors will be boldface, e.g., x = (x[1], . . . , x[d]), ran-
dom variables will be capitalized, e.g., X, and matrices
will be in black-board font, e.g., X. The i’th standard
unit vector is denoted by ei.

Let r ∈ Nd represent the number of judgments for each
feature, so that attribute a is judged r[a] times, and
we represent the object’s judgments by x, defined as:

x =
(
〈x[1](j)〉r[1]j=1, . . . , 〈x[d](j)〉r[d]j=1

)
,

where x[a](j) is the jth judgment of attribute a in x,

and 〈x[a](j)〉r[a]j=1 is a vector with x[a](j) in coordinate
j. We say that r is the repeat vector of x. We de-
note the set of all possible representations with repeat
vector r by R[r].

We denote by Dr the distribution which draws
(X, Y ) ∈ R[r] × R by first drawing a labeled object
(O, Y ) from D, and then drawing a random repre-
sentation X ∈ R[r] for this object. We denote by
D∞ the distribution that draws (X, Y ) where X ∈
Rd by first drawing (O, Y ) from D and then setting
X[a] = E[X[a] | O]. We denote the expectation
over Dr by Er = E(X,Y )∼Dr

. For D∞ we denote
E∞ = E(X,Y )∼D∞ .

For k ≥ 2, let k = (k, k, . . . , k) ∈ Nd be the re-
peat vector used in the first training phase. The fea-
ture multi-selection algorithm receives as input a la-
beled training set S = ((x1, y1), . . . , (xm, ym)) where
xi ∈ Rkd and yi ∈ R, drawn from Dk. This sample
is generated by first drawing a set of labeled objects
((o1, y1), . . . , (om, ym)) i.i.d. from D, and then draw-
ing a random representation xi for object oi. The algo-
rithm further receives as input a budget B ∈ N, which
specifies the total number of feature judgments allowed
for each unlabeled object at test (i.e., prediction) time.
The output of the algorithm is a new vector of repeats
r ∈ RB , where,

RB ≡
{

r ∈ Nd |
∑

a∈A
r[a] ≤ B

}
.

Let o be an object with a true label y, and let ŷ be
a prediction of the label of o. The squared loss for
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this prediction is `(y, ŷ) = (y − ŷ)2. Given a function
f : Z → R for some domain Z, and a distribution D
over Z × R, we denote the average loss of f on D by

`(f,D) ≡ E(Z,Y )∼D[`(f(Z), Y )].

The final goal of our procedure is to find a predictor
with a low expected loss on labeled objects drawn from
D. This predictor must use only B feature judgments
for each object, as determined by the test repeat vector
r. We consider linear predictors w ∈ Rd that operate
on the vector of average judgments of x ∈ R[r], defined
as follows:

x̄[a] ≡

{
1

r[a]

∑r[a]
j=1 x[a](j) if r[a] > 0,

0 if r[a] = 0.

For an input representation x, the predictor w predicts
the label 〈w, x̄〉. For vector v ∈ Rd, we denote by
Diag(v) ∈ Rd×d the diagonal matrix with v[a] in the
ath position.

For a vector r ∈ Nd and a matrix S ∈ Rd×d, we denote
by subr(S) the submatrix of S resulting from deleting
all rows and columns a such that r[a] = 0. For a
vector, subr(u) omits entries a such that r[a] = 0.
Here subr(u) ∈ Rd′

and subr(S) ∈ Rd′×d′
, where d′ is

the support size of r. We denote the pseudo-inverse
of a matrix A ∈ Rn×n (see e.g. Ben-Israel & Greville,
2003) by A+.

3. Feature Multi-Selection Algorithms

The input to a feature multi-selection algorithm is a
budget B and m labeled examples in which each at-
tribute has been judged k times, and the output is a
repeat vector r ∈ RB . Our ultimate goal is to find
r and a predictor w ∈ Rd such that `(w, Dr) is min-
imal. We now give intuition about the derivation of
the algorithms, but their formal definition is given in
Alg. 1.

Define the loss of a repeat vector to be `(r) ≡
minw∈Rd `(w, Dr). The goal is to minimize `(r) over
r ∈ RB . We give two forward-selection algorithms,
both of which begin with r = (0, . . . , 0) and greedily
increment r[a] for a that most decreases an estimate of
`(r). The key question is how does one estimate this
projected loss `(r) since the number of judgments can
exceed k. We simplify notation by first considering
only r which are positive, i.e., r[a] ≥ 1 for each a. We
will shortly explain how to handle r[a] = 0. Define

b = E[XY ], and Σr = Er[X̄
T X̄].

We call b[a] the correlation of a with the label. Note
that b = Ek[X̄Y ], since linearity of expectation im-
plies that b does not depend on k. Straightforward

calculations show that, for any positive repeat vector
r, If Σr is non-singular,2

`(r) = min
w

Er

[
(wT X̄− Y )2

]
= Er[Y

2]− bT Σ−1r b.

Since E[Y 2] does not depend on r, minimizing `(r) is
equivalent to maximizing bT Σ−1r b (for positive r and
nonsingular Σr).

3.1. A Scoring Algorithm

The first algorithm that we propose is derived from the
zero-correlation assumption, that E[X[a]X[a′]] = 0 for
a 6= a′, or equivalently that the covariance matrix is
diagonal. Perhaps the simplest approach to standard
feature selection is to score each feature independently,
based on its normalized empirical correlation with the
label, and to select the B top-scoring features. If fea-
tures are uncorrelated and the training sample is suffi-
ciently large, then this efficient approach finds an opti-
mal set of features. The feature multi-selection scoring
algorithm that we propose henceforth is optimal un-
der similar assumptions, however it is complicated by
the fact that we may include multiple repetitions of
each feature. Under the zero-correlation assumption,
Σr is diagonal, and its ath element, for r[a] > 0, can
be expanded as

Er[(X̄[a])2] = σ2[a] +
v[a]

r[a]
, where

v[a] ≡ EO∼DO
[Var[X[a] | O]] and

σ2[a] ≡ E∞
[
(X[a])2

]
.

We refer to v[a] as the internal variance as it measures
the “inter-rater reliability” of a, and we call σ2[a] the
external variance as it is the inherent variance between
examples. Hence for a diagonal Σr, simple manipula-
tion gives,

E[Y 2]− `(r) =
∑

a:r[a]>0

(b[a])2

σ2[a] + v[a]
r[a]

. (1)

Therefore, when Σr is diagonal, minimizing the pro-
jected loss is equivalent to maximizing the RHS above,
a sum of independent terms that depend on the corre-
lation and on the internal and external variance of each
attribute, all of which can be estimated just once, for
all possible repeat vectors. As one expects, greater cor-
relation indicates a better feature, while a greater ex-
ternal variance indicates a worse feature. A larger in-
ternal variance indicates that more repeats are needed
to achieve prediction quality.

2For singular Σr, the pseudo-inverse Σ+
r replaces Σ−1

r .
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To estimate Eq. (1) we estimate each of the compo-
nents on the RHS. Unbiased estimation of b is straight-
forward, and unbiased estimation of v is also possible
for k ≥ 2 samples per object, though importantly one
should use the unbiased variance estimator,

v̂[a] =
1

m

∑
i

VarEst(xi[a](1), . . . , xi[a](j)), (2)

VarEst(α1, . . . , αn) ≡ 1

n− 1

∑
j∈[n]

(αj −
1

n

∑
j′∈[n]

αj′)
2.

Using these estimates of v, we estimate the external

variance using the equality σ2[a] = Ek

[
(X̄[a])2

]
− v[a]

k .
A slight complication arises here, as this estimate
might be negative for small samples, so we round it
up to 0 when this happens. Another issue might seem
to arise when the denominator of one of the summands
in Eq. (1) is zero, however note that this can only oc-
cur if both the internal and the external variance are
zero, which implies that the feature is constantly zero,
thus zeroing its correlation as well. The same holds for
the estimated ratio. In such cases we treat the ratio
as equal to 0.

3.2. The Full Multi-Selection Algorithm

The scoring algorithm is motivated by the assumption
of zero correlation between features. However, this
assumption rarely holds in practice. Building on and
paralleling the definitions and derivation above, the
Full Algorithm similarly maximizes bT Σ−1r b without
this assumption. For positive r, one has

Σr = Σ + Diag(v[1]/r[1], . . . , v[d]/r[d])

Where Σ ≡ E∞[XTX] is the external covariance ma-
trix, and we estimate it based on the equality Σ =
Σk−Diag(v)/k. Just as in the Scoring algorithm, the
estimates of σ2[a] might be negative, in the full algo-
rithm it is possible that the estimate of Σ will not be
positive semi-definite, so we analogously “round up”
our estimate of Σ to the nearest PSD matrix (see im-
plementation details below). The estimate when some
of the r[a]’s are zero is formed by deleting the corre-
sponding entries in the estimate of b and the corre-
sponding rows and columns in the estimate of Σr.

3.3. Guarantees

Under our distributional assumptions, we show that
the estimated objective functions used by our algo-
rithms converge to E[Y 2] − `(r). Thus maximizing
the estimated objective approximately minimizes `(r).

Formally, let ˆobjf (r) and ˆobjs(r) be the objectives

Algorithm 1 Feature multi-selection algorithms

1: Input: Budget B; ((x1, y1), . . . , (xm, ym)) ∈
Rdk+1, Algorithm type: Scoring/Full.

2: Output: A repeat vector r ∈ RB .
3: x̄i[a]← 1

k

∑
j∈[k] xi[a](j) for i ∈ [m], a ∈ A.

4: b̂← 1
m

∑
i yix̄i.

5: v̂[a]← 1
m

∑
i VarEst(xi[a](1), . . . , xi[a](k)).

6: if Scoring Algorithm then

7: ∀a ∈ A, σ̂2[a]← max
{

0, 1
m

∑
i(x̄i[a])2 − v̂[a]

k

}
.

8: Define ˆobj(r) ≡
∑

a:r[a]>0 b̂[a]2/(σ̂2[a] + v̂[a]
r[a] )

9: else
10: Σ̂← MakePSD

(
1
m

∑
i x̄T

i x̄i −Diag(v̂)/k)
)

11: Mr ≡ subr(Σ̂ + Diag( v̂[1]
r[1] , . . . ,

v̂[d]
r[d] ))

12: Define ˆobj(r) ≡ subr(b̂)TM+
r subr(b̂)

13: end if
14: r0 ← (0, . . . , 0) ∈ Nd

15: for t = 1 to B do
16: Find ibest ∈ [d] such that ˆobj(rt−1 + ei) is max-

imal.
17: rt ← rt−1 + eibest

.
18: end for
19: Return rB .

used in Alg. 1 for the full algorithm and the Scoring
algorithm, respectively. Note that these objectives are
implicitly functions of the training sample S. For a
symmetric matrix S, let λmin(S) be the smallest eigen-
values of S. We define: λ = minr∈RB

λmin(subr(Σ)),
and B̄ = min(B, d).

Theorem 3.1. Suppose that all judgments and labels
are in [−1, 1]. Then for any δ ∈ (0, 1), with prob. at
least 1− δ over m i.i.d. training samples from Dk, for
all r ∈ RB, for m ≥ Ω̃(B̄ ln(B̄d/δ)/λ2) we have

| ˆobjf (r)− (E[Y 2]− `(r))| ≤ O
(
B̄3 ln(Bd/δ)

λ2
√
m

)
.

If the external covariance matrix Σ is diagonal, then
for m ≥ Ω̃(ln(d/δ)/λ2) we have

| ˆobjs(r)− (E[Y 2]− `(r))| ≤ O
(

ln(Bd/δ)

λ2
√
m

)
.

The convergence rate for the full algorithm stems from
two bounds: (1) If the norm of the minimizing w
is at most α, then the convergence rate is at most
B̄α2/

√
m; (2) With high probability, the norm of the

minimizing w is at most
√
B̄/λ. An additional factor

of O(B̄ ln(Bd)) gets uniform convergence over r ∈ RB .
The components of this result are of the same order
as the equivalent results for uniform convergence of
standard least-squares regression. An improved rate of
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B̄α2/m can be achieved for least-squares regression,

if the algorithm exactly minimizes the sample squared
loss (Srebro et al., 2010). However, our algorithm min-
imizes another objective, thus this result is not directly
applicable. We leave it as a challenge for future work
to find out whether a faster rate can be achieved in
our case.

As always, these convergence rates are worst-case, and
in practice a much smaller sample size is often suffi-
cient to get meaningful results, as we have observed
in our experiments. However, if the available training
sample is too small to achieve reasonable results, one
can limit the norm of the minimizer by adding regular-
ization to the estimated covariance matrix, as in ridge
regression (Hoerl & Kennard, 1970). This would allow
faster convergence at the expense of a more limited
class of predictors.

As Theorem 3.1 shows, when the zero-correlation as-
sumption holds, the Scoring algorithm enjoys a much
faster worst-case rate of convergence than the full algo-
rithm. This is because it does not attempt to estimate
the entire covariance matrix. This advantage is more
significant for larger budgets. An additional advantage
is that it finds the optimal value of r for its estimated
objective:

Theorem 3.2. The Scoring algorithm returns r ∈
argmaxr∈RB

ˆobjs(r).

Theorem 3.2 follows since f(r) = a/(b+c/r) is concave
and increasing in r and from the following observation.

Lemma 3.3. Let r ∈ Nd, and f(r) =
∑

i∈[d] gi(r[i]),

where gi(·) : R+ → R are monotonic non-decreasing
concave functions. Let B ∈ N. The maximum of f(r)
subject to r ∈ RB is attained by a greedy algorithm
which starts with r = (0, . . . , 0), and iteratively in-
creases the coordinate which increases f the most.

3.4. Implementation

If our estimate of Σ is not PSD, we use the proce-
dure ‘MakePSD’, which takes a symmetric matrix A
as input, and returns the PSD closest to A in Frobe-
nius norm. This can be done by calculating the eigen-
value decomposition A = UDUT where U is orthogonal
and D is diagonal, and returning UD̃UT , where D̃ is D
with zeroed negative entries (Higham, 1988). If we
assume a diagonal external covariance, then this pro-
cedure is equivalent to rounding up the estimate of
σ2(a) to zero, as done in the Scoring algorithm. For
a budget of B, the full algorithm performs Bd SVDs
to calculate pseudo-inverses. Note, however, that the
largest matrix that might be decomposed here is of
size min(d,B) × min(d,B). Furthermore, in practice

the matrices can be much smaller, since the algorithm
might choose several repeats of the same features. In
our experiments, the total time for decompositions,
using standard libraries on a standard personal com-
puter, has been negligible.

Our description of the algorithms above assumes for
simplicity that the mean of all features is zero. In
practice, one adds a ‘free’ feature that is always 1, to
allow for biased regressors. For the Scoring algorithm,
one should further subtract the empirical mean from
each feature. For the full algorithm, this not necessary,
because when bias is allowed, adding a constant to any
feature provably will not change the output of the full
algorithm.

4. Experiments

We tested our approach on three regression problems.
In the first problem the feature judgments were sim-
ulated. In the second and third problem they were
collected from the crowd using Amazon’s Mechanical
Turk.3 For the simulated experiment we used the UCI
dataset ‘Relative location of CT slices on axial axis
Data Set’ (Frank & Asuncion, 2010). Here the features
are histograms of spatial measurements in the image,
and the label to predict is the relative location of the
image on the axial axis. To simulate features with
varying judgments, we collapsed each set of 8 adjacent
histogram bins into a single feature, so that each judg-
ment of the new feature was randomly chosen out of 8
possible values for this feature. The resulting dataset
contained 48 noisy real-valued features per example.

The second and third problems were to predict the

3http://mturk.com. We will share our data upon re-
quest from other researchers, due to the sensitivity of judg-
ments on people’s images.
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Figure 1. Properties of selected attributes for height
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height and weight of people from a photo. 880
photos with self-declared height and weight were
extracted from the publicly available Photographic
Height/Weight Chart (Cockerham, 2013), where peo-
ple post pictures of themselves announcing their own
height and weight. We chose 37 attributes that we
felt the crowd could judge and might be predictive.
We collected judgments for these binary attributes,
mainly following the collection methodology of Pat-
terson & Hays (2012), by batching the images into
groups of 40, to make judging efficient. To encourage
honest workers, we promised (and delivered) bonuses
for good work. We limited the amount of work any
one person could do. We used all of the collected
judgments, regardless of whether the workers received
bonuses for them or not. Our pay per hour was set
to average to minimum wage. We collected numeri-
cal estimates of the height and the weight in a simi-
lar fashion. Binary judgments took about one second
per judgment and their cost was a fraction of a cent
per attribute judgment. The numerical estimates took
about four times as long and we paid four times as
much for them. Accordingly, we adjusted all the algo-
rithms to count a single numerical judgment as equal
to four binary attribute judgments. Figure 1 and Fig-
ure 2 show the normalized correlation (b̂[a]/σ̂[a]) vs.
the normalized inter-rater reliability (v̂[a]/σ̂[a]) of se-
lected attributes. These plots demonstrate that all
combinations of useful/non-useful and stable/noisy at-
tributes exist in this data. The full listing of attribute
properties is provided in (Sabato & Kalai, 2013).

We compared the test error of our algorithms, de-
noted ‘Full’ and ‘Scoring’ in the plots, to those of sev-
eral plausible baselines. In all comparisons, we set
k = 2. The first baseline, denoted ‘Averages’ in the
plots, is based on the “predictive” feature selection al-
gorithm of Isola et al. (2011): We average the 2 judg-
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Figure 2. Properties of selected attributes for weight

ments per attribute to create a standard data set with
one value for each object-attribute pair, and greed-
ily add attributes, one at a time, so as to minimize
the least-squares error. The resulting regressor uses 2
judgments for each selected feature. The second base-
line, denoted ‘Copies’, treats the 2 judgments of each
feature-object pair as 2 different individual attributes,
and again performs greedy forward selection on these
features, except that the order of selecting the copies
in each feature was fixed, to avoid over-fitting. The
test repeat vector r was set according to the number
of copies selected for each feature. These baselines
perform standard Machine Learning feature selection:
‘Averages’ considers d features and ‘Copies’ consid-
ers 2d features. For height and weight prediction, we
compared the results also to the test error achieved by
averaging only the height or weight estimates of the
crowd, respectively. Since each numerical feature costs
4 times as much as a binary feature, we averaged over
B/4 numerical judgments when the budget was set to
B. We did not use regularization anywhere, thus our
algorithms and the baselines are all parameter-free.

The test error in the plots was obtained as follows:
r was selected based on a training set with k judg-
ments. We then added judgments to features in the
training set to get to r repeats. Finally we performed
regular regression on the means of the enhanced train-
ing set to get a predictor. This predictor was used
to predict the labels of the test set with r judgments.
We averaged results over 50 random train/test splits.
Figures 3 and 4 show that our full algorithm achieved
better test error than the baselines. The Scoring al-
gorithm was usually somewhat worse than the Full
Multi-Selection algorithm, and for small budgets also
sometimes worse than the baselines. This is expected
due to its zero-correlation assumption. However, when
the sample size was small, the Scoring algorithm was
sometimes better (see third plot in Fig. 4), since it
suffered from less over-fitting. This is consistent with
our convergence analysis in Theorem 3.1. Analysis of
training errors indicates that baseline algorithms suf-
fer for two different reasons: (1) they are limited to
a small number of repeats per feature; and (2) they
suffer from greater over-fitting, probably since our al-
gorithm tends to select a sparser r than do the base-
lines. We list examples of predictors learned by the
full algorithm in (Sabato & Kalai, 2013).

In our last experiment we tested the tradeoff between
no. of training judgments per feature and no. of train-
ing examples, in the following setting: Suppose we
have a budget that allows us to collect a total of M
judgments for training the feature multi-selection al-
gorithm, and we have access to at least M/2d labeled

http://www.cockeyed.com/photos/bodies/heightweight.html
http://www.cockeyed.com/photos/bodies/heightweight.html
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Figure 3. The ‘Slice’ dataset. Top: comparing algo-
rithms. Bottom: Training loss with a constant #training
examples×#repeats. Numbers in legend indicate value of
constant. Budget was fixed to 30.

examples. We can decide on a number k of judgments
per feature, randomly select M/kd objects from our
labeled pool to serve as the training set, and obtain
kd judgments for each of these objects. What num-
ber k should we choose? Does this number depend on
the total budget M? We compared the test error aris-
ing from different values of k over different values of
M , for the slice dataset using both of our algorithms,.
The results are shown in Figure 3. These results show
a clear preference for a small k (which allows a large m
on the same budget M). Characterizing the optimal
number k is left as an open question for future work.

5. Conclusions

We introduce the problem of feature multi-selection
and provide two algorithms for regression with mean
averaging of judgments. Future directions include
other learning tasks, such as classification, and other
types of feature aggregation, such as median averag-
ing (majority). An additional important question for
future work is how to carry out feature multi-selection
in an environment with a changing crowd.
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